Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422851

RESUMO

Globally, lakes are drying up and shrinking and inland lakes, in particular, face severe water shortage problems. Thus, the degradation mechanisms and protection measures for inland lakes urgently need to be explored. Hongjiannao Lake (HL), an inland lake on the border of Shaanxi Province and Inner Mongolia Autonomous Region of China, was selected for the present case study. The evolution of HL was analyzed and the current lake water storage was measured on site. The driving factors of water resource changes in HL were discussed based on meteorological and landcover data. The results showed that (1) from 1929 to 2021, the lake area of HL experienced four stages: formation, stability, shrinkage and recovery. The smallest water area was 31.08 km2 in 2015, half the size of lake in the 1960s. (2) Spatially, the morphological changes of HL mainly occurred where the rivers entered the lake. (3) In 2021, the average depth of HL was 3.77 m, and the water storage capacity was 140.56 million m3. (4) The annual average evaporation was 3.36 times the amount of the annual average precipitation in Hongjiannao Basin (HB), but climate change was not the main driver of changes in the HL area. (5) In the past 20 years, cultivated land and artificial surface increased by 3.11% and 1.04%, respectively, whereas grassland and water body decreased by 3.51% and 0.45%, respectively. The expansion of cultivated land and artificial surface, as well as the construction of reservoirs upstream of the lake, hindered the replenishment of water resources to HL. This study recommends a range of strategies for water resource protection in inland lakes, including implementing ecological restoration projects, carrying out inter-basin water transfer measures, improving the efficiency of regional water resource use, and improving industrial structure and distribution.


Assuntos
Lagos , Recursos Hídricos , China , Água , Rios , Monitoramento Ambiental
2.
J Environ Manage ; 366: 121789, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029169

RESUMO

The continuous expansion of modern cities not only leads to ecological degradation but also seriously threatens regional ecological security and sustainable development. The construction of ecological security patterns (ESPs) has emerged as a significant approach to alleviate or even solve the conflict between regional development and ecological protection. The Chengdu-Chongqing Economic Circle (CCEC) represents the core area of regional economic development strategy in western China, characterized by rapid economic growth from 2000 to 2020. This study integrates assessments of ecosystem services importance, eco-environmental sensitivity and landscape connectivity; uses circuit theory and hydrological analysis to establish a research framework for the spatiotemporal evolution of regional ESP; and develops an optimized ESP combined with the Major Function Oriented Zone. The results indicate that urban expansion significantly impacted the ESP of the CCEC between 2000 and 2020. The fragmentation and merging of ecological sources occurred simultaneously, the number of patches reduced by 28.13% from 64 to 46. The early ecological security network was compromised, leading to the disappearance or elongation of some ecological corridors. The number of ecological corridors decreased by 36.03% from 136 to 87; the total length was reduced by 29.92% from 7500.57 km to 5256.28 km. Urgent optimization of the ESP is needed, reducing the number of key ecological protection areas by 50% from 106 to 53 while increasing priority restoration areas by 13.51% from 37 to 42. The study also reveals the insufficiency of the current Major Function Oriented Zone in protecting linear corridors, necessitating focused attention on the protection and restoration of ecological sources and surrounding corridors in important development zones. Additionally, a spatial optimization strategy of "one shelter, two cores, and three regions" is proposed to enhance regional ecosystem stability and connectivity. The aim was to strike a balance between ecological protection and food security by recommending an ecological corridor width range of 30∼100 m. These research findings offer scientific guidance for ecological space protection and restoration in the CCEC, contributing to the enhancement of both scientific and rational ecological planning in rapidly urbanizing areas.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Ecossistema , Urbanização , China , Desenvolvimento Econômico
3.
Cardiovasc Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832923

RESUMO

AIMS: ßII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of ßII spectrin in cardiac contractile function and pathological post-myocardial infarction remodeling remain unclear. Here, we investigated whether and how ßII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: We observed that the levels of serum ßII spectrin breakdown products (ßII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, ßII spectrin was degraded into ßII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific ßII spectrin knockout mice, we found that deletion of ßII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific ßII spectrin knockout mice had not developed, deletion of ßII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of ßII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that ßII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, ßII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability. CONCLUSION: ßII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in ßII spectrin exacerbate cardiac I/R injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA