Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 213(3): 268-282, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856585

RESUMO

Recruitment of immune cells to the injury site plays a pivotal role in the pathology of radiation-associated diseases. In this study, we investigated the impact of the chemokine CCL22 released from alveolar type II epithelial (AT2) cells after irradiation on the recruitment and functional changes of dendritic cells (DCs) in the development of radiation-induced lung injury (RILI). By examining changes in CCL22 protein levels in lung tissue of C57BL/6N mice with RILI, we discovered that ionizing radiation increased CCL22 expression in irradiated alveolar AT2 cells, as did MLE-12 cells after irradiation. A transwell migration assay revealed that CCL22 promoted the migration of CCR4-positive DCs to the injury site, which explained the migration of pulmonary CCR4-positive DCs in RILI mice in vivo. Coculture experiments demonstrated that, consistent with the response of regulatory T cells in the lung tissue of RILI mice, exogenous CCL22-induced DCs promoted regulatory T cell proliferation. Mechanistically, we demonstrated that Dectin2 and Nr4a2 are key targets in the CCL22 signaling pathway, which was confirmed in pulmonary DCs of RILI mice. As a result, CCL22 upregulated the expression of PD-L1, IL-6, and IL-10 in DCs. Consequently, we identified a mechanism in which CCL22 induced DC tolerance through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 pathway. Collectively, these findings demonstrated that ionizing radiation stimulates the expression of CCL22 in AT2 cells to recruit DCs to the injury site and further polarizes them into a tolerant subgroup of CCL22 DCs to regulate lung immunity, ultimately providing potential therapeutic targets for DC-mediated RILI.


Assuntos
Antígeno B7-H1 , Quimiocina CCL22 , Células Dendríticas , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC , Receptores CCR4 , Transdução de Sinais , Animais , Camundongos , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Lesão Pulmonar/imunologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/imunologia , Antígeno B7-H1/imunologia , Tolerância Imunológica , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Linfócitos T Reguladores/imunologia
2.
Chemistry ; 30(33): e202400656, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38616497

RESUMO

Assembling multi-anionic groups is conducive to utilizing respective advantage to achieve the enhancement of optical performance. Two new hydroxyfluorooxoborates, Ama2-Rb2B3O3F4(OH) and K8Cs2B15O14(OH)7F20 ⋅ H2O with [B3O3F4(OH)] six-membered rings were synthesized for the first time. The title compounds exhibit short ultraviolet cutoff edges (<200 nm) and K8Cs2B15O14(OH)7F20 ⋅ H2O possesses a moderate experimental refractive index difference of 0.051@546 nm.

3.
Inorg Chem ; 63(10): 4783-4789, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38412503

RESUMO

A mild hydrothermal method was employed to successfully synthesize two new sulfate fluorides, namely, AYSO4F2 (A = K, Rb). They are isomorphic, and both contain [YO4F4] polyhedra and [SO4] tetrahedra in the structure. Theoretical calculations and experimental tests show that AYSO4F2 (A = K, Rb) have large band gaps (7.79 and 7.82 eV) and moderate birefringence (0.015 and 0.02 @ 546.1 nm), with significantly enhanced birefringence and band gaps as compared to that of the single alkali metal sulfates A2SO4 (A = K, Rb). Furthermore, theoretical calculations show that [YO4F4] polyhedra are the main reason for the band gap and birefringence enhancement. This work contributes to the advancement of structural chemistry in the field of rare-earth sulfates, offering a novel approach for the design of sulfates characterized by large birefringence.

4.
Inorg Chem ; 63(1): 852-859, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38112263

RESUMO

The first compound of cadmium-borate silicate Cd8(BO3)4SiO4, crystallizing in space group P42/n (no. 86), has been successfully synthesized by the conventional high-temperature solution method and melts congruently. The zero-dimensional anionic groups of Cd8(BO3)4SiO4 are isolated [BO3] triangles and isolated [SiO4] tetrahedra which are filled in the framework formed by [CdO6] polyhedra. It has a moderate birefringence (Δn = 0.053 at 546 nm), which is measured by experiment and evaluated by first-principles calculations; meanwhile, the source of birefringence is revealed through the response electronic distribution anisotropy method. The UV-vis-NIR diffuse reflectance spectrum indicates that Cd8(BO3)4SiO4 possesses a wide optical transparency range, with a UV cutoff edge at about 254 nm. This work enriches the structure chemistry of borate silicates, and we discussed the possible methods for the exploration and synthesis of novel optical crystals possessing zero-dimensional anionic groups in the borate silicate system.

5.
Inorg Chem ; 63(1): 661-667, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38131323

RESUMO

Enhancing anisotropy through an effective synergistic arrangement of anionic and cationic groups is crucial for improving the birefringence optical properties of materials. In this work, by transforming I-O into I-F through the fluorination strategy, two metal-free guanidine fluorooxoiodates (C(NH2)3)2(I2O5F)(IO3)(H2O) and C(NH2)3IO2F2 and one guanidine iodate C(NH2)3IO3 were successfully synthesized using the hydrothermal method. An unprecedented dimer [I2O5F] formed by [IO3F] and [IO3] in (C(NH2)3)2(I2O5F)(IO3)(H2O) was found, which greatly enriches the structural diversity of fluorooxoiodates. All three compounds feature a relatively large birefringence (Δn = 0.068, 0.110 and 0.075 at 546 nm) and a short ultraviolet cutoff edge. The theoretical calculation was carried out to understand the electronic structures and linear optical properties.

6.
Biomed Eng Online ; 23(1): 53, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858706

RESUMO

BACKGROUND: Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS: In this paper, we constructed a new type of hollow Mn 3 O 4 nanocomposites, Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS: This report demonstrates that Mn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS: In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.


Assuntos
Ácido Fólico , Imageamento por Ressonância Magnética , Nanocompostos , Metástase Neoplásica , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Animais , Nanocompostos/química , Camundongos , Linhagem Celular Tumoral , Humanos , Ácido Fólico/química , Compostos de Manganês/química , Imagem Óptica , Camundongos Nus , Óxidos
7.
J Nanobiotechnology ; 22(1): 374, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926723

RESUMO

BACKGROUND: Hypoxia-activated prodrugs present new opportunities for safe and effective tumor drug resistance therapy due to their high selectivity for hypoxic cells. However, the uneven distribution of oxygen in solid tumor and insufficient hypoxia in the tumor microenvironment greatly limit its therapeutic efficacy. RESULTS: In this paper, a novel AQ4N-Mn(II)@PDA coordination nanoplatform was designed and functionalized with GMBP1 to target drug-resistant tumor cells. Its excellent photothermal conversion efficiency could achieve local high-temperature photothermal therapy in tumors, which could not only effectively exacerbate tumor hypoxia and thus improve the efficacy of hypoxia-activated chemotherapy of AQ4N but also significantly accelerate Mn2+-mediated Fenton-like activity to enhance chemodynamic therapy. Moreover, real-time monitoring of blood oxygen saturation through photoacoustic imaging could reflect the hypoxic status of tumors during treatment. Furthermore, synergistic treatment effectively inhibited tumor growth and improved the survival rate of mice bearing orthotopic drug-resistant tumors. CONCLUSIONS: This study not only provided a new idea for PTT combined with hypoxia-activated chemotherapy and CDT for drug-resistant tumors but also explored a vital theory for real-time monitoring of hypoxia during treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia Fototérmica , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Terapia Fototérmica/métodos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Hipóxia Tumoral/efeitos dos fármacos , Manganês/química , Feminino , Neoplasias/tratamento farmacológico , Antraquinonas
8.
Pharm Biol ; 62(1): 105-119, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38145345

RESUMO

CONTEXT: Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear. OBJECTIVE: This study elucidates the possible mechanisms of QGSTW in treating AAMI. MATERIALS AND METHODS: Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks. RESULTS: Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG. DISCUSSION AND CONCLUSIONS: This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.


Assuntos
Medicamentos de Ervas Chinesas , Transtornos da Memória , Camundongos , Animais , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Western Blotting , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia
9.
Angew Chem Int Ed Engl ; : e202413680, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143747

RESUMO

Deep-ultraviolet (UV) birefringent materials are urgently needed to facilitate light polarization in deep-UV lithography. Maximizing anisotropy by regulating the alignment of functional modules is essential for improving the linear optical performance of birefringent materials. In this work, we proposed a strategy to design deep-UV birefringent materials that achieve functional module ordering via weak interactions. Following this strategy, four compounds CN4H7SO3CF3, CN4H7SO3CH3, C(NH2)3SO3CH3, and C(NH2)3SO3CF3 were identified as high-performance candidates for deep-UV birefringent materials. The millimeter-sized crystals of CN4H7SO3CF3, CN4H7SO3CH3, and C(NH2)3SO3CH3 were grown, and the transmittance spectra show that their cutoff edges are below 200 nm. CN4H7SO3CF3 exhibits the largest birefringence (0.149 @ 546 nm, 0.395 @ 200 nm) in the deep-UV region among reported sulfates and sulfate derivatives. It reveals that the hydrogen bond can modulate the module ordering of the heteroleptic tetrahedra and planar π-conjugated cations, thus greatly enhancing the birefringence. Our study not only discovers new deep-UV birefringent materials but also provides an upgraded strategy for optimizing optical anisotropy to achieve efficient birefringence.

10.
Foods ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38472761

RESUMO

This study employed the headspace-gas chromatography-ion migration spectrum (HS-GC-IMS) in conjunction with the gas chromatography-mass spectrometer (GC-MS) technique for the assessment of the flavor quality of complementary food powder intended for infants and young children. A total of 62 volatile compounds were identified, including aldehydes, esters, alcohols, ketones, pyrazines, and furans, among which aldehydes were the most abundant compounds. Based on the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) models, infant nutritional powder (YYB) from different manufacturers could be clearly distinguished. Among them, 2-hydroxybenzaldehyde, 1, 2-dimethoxyethane, 2-isobutyl-3-methoxypyrazine, and methyl butyrate were the four most critical differential volatiles. In addition, these differences were also manifested in changes in fatty acids. The reason for this phenomenon can be attributed to the difference in the proportion of raw materials used in nutrition powder, micronutrient content, and the packaging process. In conclusion, this study provides comprehensive information on the flavor quality of YYB, which can be used as a basis for quality control of YYB.

11.
Heliyon ; 10(13): e33468, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027576

RESUMO

Considering the long-term memory and volatility clustering of the European Union (EU) Carbon Emission Allowances (EUA) futures returns, based on the economy-energy-environment system perspective and the assumption of investors' heterogeneity, this study proposes a joint modeling approach combining the fractionally integrated generalized autoregressive conditional heteroscedasticity model (FIGARCH) and the stochastic cusp catastrophe model (SCC) to examine the equilibrium bifurcations and extreme risks in the EU carbon futures market. The relevant results are threefold. (1) The SCC model has good fitting effect and interpretability, and is an effective method for investigating catastrophe reactions under time-varying volatility conditions. (2) In the EUA futures market, chartists are mainly affected by short-term price and trading volume changes, which leads to the emergence of equilibrium bifurcations, while fundamentalists make investment decisions based on the economy, the energy market, and market supply-demand, which affects the asymmetry of equilibrium bifurcations. (3) Using the catastrophe criterion (i.e., Cardan's discriminant of the equilibrium surface equation), we identify148 equilibrium bifurcation time points in the EUA futures market from December 3, 2009 to September 16, 2020, most of which are concentrated in two upward periods with an average scale of extreme risks is about 32.51 %. Our analysis provides theoretical support for regulatory authorities to stabilize the carbon futures market and build a collaborative extreme risk management framework covering energy and macroeconomics, also proposing suggestions for traders to effectively prevent extreme risks.

12.
Front Pediatr ; 12: 1417265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156026

RESUMO

Background and objective: Despite its acknowledged benefits, the selection of an optimal regional block for analgesia pediatric hernia surgery remains a subject of debate. This study endeavored to conduct a network meta-analysis and systematic review of randomized clinical trials, aiming to amalgamate insights from both direct and indirect comparisons concerning the analgesic effectiveness and safety of various regional blocks post-inguinal hernia repair in children. Method: A comprehensive literature search was performed across PubMed, EMBASE, Web of Science, and the Cochrane Library up to 12 November 2022 by two independent reviewers, employing a standardized protocol. The inclusion criteria encompassed randomized trials focusing on children undergoing inguinal hernia repair utilizing either local infiltration analgesia or regional analgesia. The primary outcomes assessed were pain scores at 2, 6, and 24 h post-operation. Results: The initial search yielded 281 records relating to 1,137 patients. The analysis of ranking probability indicated that Paravertebral Block (PVB) holds the highest likelihood (88% and 48%) of being the most effective in alleviating pain at 2 h and 6 h post-surgery. Trans vs. Abdominis Plane Block (TAPB) emerged as the superior choice for mitigating pain (83%) and decreasing morphine consumption (93%) at 24 h following the operation. Local Anesthetic Infiltration (LAI) was identified as the most effective in shortening the hospital stay, with a 90% probability. Conclusions: Regional anesthesia significantly enhances postoperative pain management in pediatric inguinal hernia repair surgery. For short-term postoperative pain relief, PVB emerges as the most effective technique. Meanwhile, TAPB provides more prolonged analgesia. Although TAPB does not exhibit a pronounced advantage in short-term analgesia, its simplicity and the absence of a need for a special position render it a viable option. However, the interpretation of these results should be approached with caution due to the presence of limited data and heterogeneity. Systematic Review Registration: PROSPERO (CRD42022376435; www.crd.york.ac.uk/prospero).

13.
Biomed Pharmacother ; 173: 116413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461687

RESUMO

Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.


Assuntos
Insuficiência Cardíaca , Sistema de Sinalização das MAP Quinases , Humanos , Transdução de Sinais , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio , Fibrose
14.
Chem Commun (Camb) ; 60(19): 2653-2656, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38348788

RESUMO

Fluorooxoborates constitute a rich source of optical crystals due to their structural diversity and excellent performance. Antimony fluorooxoborates with stereochemically active lone pairs of electrons still have not been found, although the first antimony borate was discovered several years ago. In this study, we have achieved the successful synthesis of the first antimony(III) fluorooxoborate with an unprecedented [B2O4F]∞ chain, namely SbB2O4F. Remarkably, SbB2O4F shows strong birefringence (0.171@1064 nm) and short UV cutoff edges (about 220 nm) according to calculations. The birefringence of SbB2O4F mainly originates from the highly distorted [SbO4] groups.

15.
Chem Sci ; 15(17): 6577-6582, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699258

RESUMO

Infrared (IR) nonlinear optical (NLO) materials with strong NLO response, wide band gap and high laser-induced damage threshold (LIDT) are highly expected in current laser technologies. Herein, by introducing double alkaline-earth metal (AEM) atoms, three wide band gap selenide IR NLO materials AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) with excellent linear and NLO optical properties have been rationally designed and fabricated. AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) are composed of unique [AIISe6] triangular prisms, [MgSe6] octahedra and [GaSe4] tetrahedra. The introduction of double AEMs effectively broadens the band gaps of selenide-based IR NLO materials. Among them, CaMg6Ga6Se16, achieving the best balance between the second-harmonic generation response (∼1.5 × AgGaS2), wide band gap (2.71 eV), high LIDT (∼9 × AgGaS2), and moderate birefringence of 0.052 @ 1064 nm, is a promising NLO candidate for high power IR laser. Theoretical calculations indicate that the NLO responses and band gaps among the three compounds are mainly determined by the NLO-active [GaSe4] units. The results enrich the chemical diversity of chalcogenides, and give some insight into the design of new functional materials based on the rare [AIISe6] prismatic units.

16.
ACS Appl Mater Interfaces ; 16(28): 36658-36666, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976617

RESUMO

Modern crystal structure prediction methods based on structure generation algorithms and first-principles calculations play important roles in the design of new materials. However, the cost of these methods is very expensive because their success mostly relies on the efficient sampling of structures and the accurate evaluation of energies for those sampled structures. Herein, we develop a Machine-learning-Assisted CRYStalline Materials sAmpling sysTem (MAXMAT) aiming to accelerate the prediction of new crystal structures. For a given chemical composition, MAXMAT can generate efficient crystal structures with the help of a Python package for crystal structure generation (PyXtal) and can quickly evaluate the energies of these generated structures using a well-developed machine learning interaction potential model (M3GNET). We have used MAXMAT to perform crystal structure searches for three different chemical systems (TiO2, MgAl2O4, and BaBOF3) to test its accuracy and efficiency. Furthermore, we apply MAXMAT to predict new nonlinear optical materials, suggesting several thermodynamically synthesizable structures with high performance in LiZnGaS3 and CaBOF3 systems.

17.
Biomed Pharmacother ; 176: 116761, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788596

RESUMO

The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.


Assuntos
Doenças Cardiovasculares , Ferroptose , Ferroptose/fisiologia , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Peroxidação de Lipídeos , Ferro/metabolismo
18.
J Mol Model ; 30(8): 264, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995407

RESUMO

CONTEXT: Accurately predicting plasma protein binding rate (PPBR) and oral bioavailability (OBA) helps to better reveal the absorption and distribution of drugs in the human body and subsequent drug design. Although machine learning models have achieved good results in prediction accuracy, they often suffer from insufficient accuracy when dealing with data with irregular topological structures. METHODS: In view of this, this study proposes a pharmacokinetic parameter prediction framework based on graph convolutional networks (GCN), which predicts the PPBR and OBA of small molecule drugs. In the framework, GCN is first used to extract spatial feature information on the topological structure of drug molecules, in order to better learn node features and association information between nodes. Then, based on the principle of drug similarity, this study calculates the similarity between small molecule drugs, selects different thresholds to construct datasets, and establishes a prediction model centered on the GCN algorithm. The experimental results show that compared with traditional machine learning prediction models, the prediction model constructed based on the GCN method performs best on PPBR and OBA datasets with an inter-molecular similarity threshold of 0.25, with MAE of 0.155 and 0.167, respectively. In addition, in order to further improve the accuracy of the prediction model, GCN is combined with other algorithms. Compared to using a single GCN method, the distribution of the predicted values obtained by the combined model is highly consistent with the true values. In summary, this work provides a new method for improving the rate of early drug screening in the future.


Assuntos
Aprendizado de Máquina , Humanos , Algoritmos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Redes Neurais de Computação , Disponibilidade Biológica , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/química , Farmacocinética , Proteínas Sanguíneas/metabolismo
19.
Chem Commun (Camb) ; 60(51): 6516-6519, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38836308

RESUMO

The first chloroaluminoborate, CsAlB3O6Cl, with innovative AlO3Cl tetrahedra and a perfect planar arrangement of [B3O6] groups, was structurally designed and synthesized via chlorination of [AlO4] tetrahedra. Simultaneously, the smooth introduction of the [AlO3Cl] group into borates initiates the development of a chloroaluminoborate and greatly enriches the structural chemistry of aluminoborates.

20.
J Ethnopharmacol ; 330: 118264, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38692417

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY: Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS: First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS: ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION: ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.


Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Ferroptose , Insuficiência Cardíaca , Miócitos Cardíacos , Transdução de Sinais , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ferroptose/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Pós , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA