RESUMO
BACKGROUND: Herpes simplex virus type 1 (HSV-1) is a major cause of viral encephalitis, genital mucosal infections, and neonatal infections. Lactococcus lactis (L. lactis) has been proven to be an effective vehicle for delivering protein antigens and stimulating both mucosal and systemic immune responses. In this study, we constructed a recombinant L. lactis system expressing the protective antigen glycoprotein D (gD) of HSV-1. RESULTS: To improve the stability and persistence of antigen stimulation of the local mucosa, we inserted the immunologic adjuvant interleukin (IL)-2 and the Fc fragment of IgG into the expression system, and a recombinant L. lactis named NZ3900-gD-IL-2-Fc was constructed. By utilizing this recombinant L. lactis strain to elicit an immune response and evaluate the protective effect in mice, the recombinant L. lactis vaccine induced a significant increase in specific neutralizing antibodies, IgG, IgA, interferon-γ, and IL-4 levels in the serum of mice. Furthermore, in comparison to the mice in the control group, the vaccine also enhanced the proliferation levels of lymphocytes in response to gD. Moreover, recombinant L. lactis expressing gD significantly boosted nonspecific immune reactions in mice through the activation of immune-related genes. Furthermore, following the HSV-1 challenge of the murine lung mucosa, mice inoculated with the experimental vaccine exhibited less lung damage than control mice. CONCLUSION: Our study presents a novel method for constructing a recombinant vaccine using the food-grade, non-pathogenic, and non-commercial bacterium L. lactis. The findings indicate that this recombinant vaccine shows promise in preventing HSV-1 infection in mice.
Assuntos
Herpes Simples , Herpesvirus Humano 1 , Lactococcus lactis , Camundongos Endogâmicos BALB C , Lactococcus lactis/genética , Animais , Camundongos , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Herpes Simples/prevenção & controle , Herpes Simples/imunologia , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Sintéticas/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologiaRESUMO
Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.
Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Pele , Queratinócitos/metabolismo , Staphylococcus/genética , Proliferação de Células , Dermatite/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/efeitos adversos , Proteínas de Homeodomínio/metabolismoRESUMO
A colon tumor, one of the digestive tract malignant tumors, is harmful to human health. A potential new treatment still deserves attention. The development of a new drug needs more resources, including time and expense. Therefore, the old drug with new targets has become a current research hotspot. Fluvoxamine, as an antidepressant, could play an effect on inhibiting 5-hydroxytryptamine reuptake. In the present research, the antitumor effects and possible mechanisms of fluvoxamine are validated. The results showed that fluvoxamine significantly suppressed the migration and proliferation of tumor cells, and increased the apoptosis in vitro. Additionally, fluvoxamine significantly delays tumor development, and prompts the apoptosis in tumor tissues of mice-burdened colon tumors in vivo. The tumor suppression might be related with that fluvoxamine inhibits the expression of phosphorylated signal transducer and activator of transcription 3, matrix metalloproteinase 2, and cleaved-caspase 3. Importantly, fluvoxamine significantly reduces the expression level of programmed cell death ligand 1. This could be a possible reason that treatment with fluvoxamine drives the infiltration of T lymphocytes and M1-type macrophages in tumor tissues. Taken together, this research suggests that fluvoxamine might be a promising drug to treat colon cancer by inhibiting the proliferation and migration, inducing apoptosis, and even increasing the immune response of antitumor.
Assuntos
Neoplasias do Colo , Fluvoxamina , Humanos , Animais , Camundongos , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Metaloproteinase 2 da Matriz , Antígeno B7-H1/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Linhagem Celular TumoralRESUMO
The neonatal Fc receptor (FcRn) can transport IgG and antigen-antibody complexes participating in mucosal immune responses that protect the host from most pathogens' invasion via the respiratory, digestive, and urogenital tracts. FcRn expression can be triggered upon stimulation with pathogenic invasion on mucosal surfaces, which may significantly modulate the innate immune response of the host. As an immunoglobulin transport receptor, FcRn is implicated in the pathophysiology of immune-related diseases such as infection and autoimmune disorders. In this review, we thoroughly summarize the recent advancement of FcRn in mucosal immunity and its therapeutic strategy. This includes insights into its regulation mechanisms of FcRn expression influenced by pathogens, its emerging role in mucosal immunity and its potential probability as a therapeutic target in infection and autoimmune diseases.
Assuntos
Antígenos de Histocompatibilidade Classe I , Imunidade nas Mucosas , Receptores Fc , Humanos , Receptores Fc/imunologia , Receptores Fc/metabolismo , Animais , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Infecções/imunologia , Imunidade InataRESUMO
Breast cancer, the most common lethal cancer among women, is characterized by the uncontrolled growth of abnormal cells in breast tissue. Therefore, synergistic anticancer strategies are essential, particularly for maximizing drug delivery to tumor sites. Herein, bovine serum albumin (BSA)-bound nanoparticles encapsulating the photosensitizer chlorin e6 (Ce6) (BC) with a CuO2 core (BC/CuO2 NPs) were developed for cuproptosis-promoted cancer photodynamic therapy (PDT). The cancer cell membrane (CC) was then coated onto the surfaces to produce BC/CuO2@CC NPs for breast cancer combinatorial therapy. BSA serves dual functions as both a stabilizing scaffold for metal peroxide nanomaterials and a molecular connector for Ce6. The BC/CuO2@CC NPs group showed the stronger internalization capability than the other groups. BC/CuO2@CC NPs could effectively induce the greatest degree of apoptosis and death ratio (81.77 %), and lead to cuproptosis by downregulating the expression of DLAT, LIAS, and FDX1 protein in vitro. The intra-tumoral accumulation of BC/CuO2@CC NPs was 8.3- and 7.7-fold higher than that of Ce6 and BC/CuO2@CC NPs at 24 h postinjection, respectively. Moreover, synergistic efficacy of cuproptosis and PDT not only inhibited tumor growth but also prevented liver metastases. Thus, our work may be a novel approach for efficient and targeted cancer treatment.
RESUMO
Psoriasis, a chronic inflammatory skin disease, is characterized by complex immune dysregulation and oxidative stress responses. The neonatal Fc receptor (FcRn) plays a crucial role in the development of autoimmune diseases. Analysis of clinical psoriasis samples demonstrated a negative correlation between FcRn expression in skin lesions and disease severity. However, the role of FcRn in this process remains unclear. This study aimed to investigate the involvement of FcRn in the pathogenesis and progression of psoriasis. In an imiquimod (IMQ)-induced psoriasis-like mouse model, FcRn expression was significantly decreased in the lesional skin, and transcriptome sequencing of the skin revealed activation of the ferroptosis pathway in psoriasis. This led to the hypothesis that FcRn could potentially regulate ferroptosis via the signal transducer and activating transcription factor 3 (STAT3)/solute carrier family 7 member 11 (SLC7A11) axis. Further experiments showed exacerbated psoriasis-like lesional skin and ferroptosis in FcRn-knockout mice, whereas intervention with the ferroptosis inhibitor Fer-1 or STAT3 inhibitor Stattic alleviated these symptoms. Critical binding sites for the transcription factor STAT3 were identified in the SLC7A11 promoter region at positions -1185 and -564 using the luciferase reporter assays and chromatin immunoprecipitation. The administration of 1,4-naphthoquinone (NQ), an FcRn agonist, effectively alleviated psoriasis-like skin lesions by inhibiting ferroptosis. This study highlights the molecular mechanisms of action of FcRn in psoriasis and provides an experimental basis for the development of novel therapeutic strategies targeting FcRn.
RESUMO
Psoriasis and inflammatory bowel disease (IBD) are chronic immune-mediated diseases that adversely affect patients' quality of life. Interleukin (IL)-27 plays an important role in a variety of infectious diseases, autoimmune disorders, and cancers. However, its therapeutic effects in psoriasis and colitis remain underexplored. In this study, we evaluated the therapeutic potential of recombinant Lactococcus lactis (L. lactis) expressing IL-27 (pIL-27) in imiquimod-induced psoriasis and dextran sodium sulfate-induced colitis mouse models. In the psoriasis mouse model, oral administration of pIL-27 significantly reduced skin scaling, mitigated weight loss, lowered psoriasis area and severity index scores, diminished epidermal hyperplasia and inflammatory cell infiltration, and decreased inflammatory cytokine levels. In the colitis mouse model, oral administration of pIL-27 alleviated weight loss, improved disease activity index scores, prevented colon shortening, ameliorated histopathological changes, and decreased inflammatory cytokine levels. Furthermore, recombinant L. lactis expressing IL-27 could modulate the gut microbiota, increasing the amount of beneficial bacteria and reducing harmful bacteria in the intestine, thereby alleviating the progression of psoriasis and colitis. These results suggest the potential of IL-27 as a therapeutic option for treating psoriasis and IBD.
RESUMO
Melanoma, the most perilous form of skin cancer, is known for its inherent resistance to chemotherapy. Even with advances in tumor immunotherapy, the survival of patients with advanced or recurrent melanomas remains poor. Over time, melanoma tumor cells may produce excessive angiogenic factors, necessitating the use of combinations of angiogenesis inhibitors, including broad-spectrum options, to combat melanoma. Among these inhibitors, Endostatin is one of the most broad-spectrum and least toxic angiogenesis inhibitors. We found Endostatin significantly increased the infiltration of CD8+ T cells and reduced the infiltration of M2 tumor-associated macrophages (TAMs) in the melanoma tumor microenvironment (TME). Interestingly, we also observed high expression levels of programmed death 1 (PD-1), an essential immune checkpoint molecule associated with tumor immune evasion, within the melanoma tumor microenvironment despite the use of Endostatin. To address this issue, we investigated the effects of a plasmid expressing Endostatin and PD-1 siRNA, wherein Endostatin was overexpressed while RNA interference (RNAi) targeted PD-1. These therapeutic agents were delivered using attenuated Salmonella in melanoma-bearing mice. Our results demonstrate that pEndostatin-siRNA-PD-1 therapy exhibits optimal therapeutic efficacy against melanoma. We found that pEndostatin-siRNA-PD-1 therapy promotes the infiltration of CD8+ T cells and the expression of granzyme B in melanoma tumors. Importantly, combined inhibition of angiogenesis and PD-1 significantly suppresses melanoma tumor progression compared with the inhibition of angiogenesis or PD-1 alone. Based on these findings, our study suggests that combining PD-1 inhibition with angiogenesis inhibitors holds promise as a clinical strategy for the treatment of melanoma.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Endostatinas/genética , Endostatinas/uso terapêutico , Endostatinas/metabolismo , Receptor de Morte Celular Programada 1/genética , Fator A de Crescimento do Endotélio Vascular/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Plasmídeos , Salmonella/genética , Microambiente TumoralRESUMO
Radiation therapy is a primary treatment for hepatocellular carcinoma (HCC), but its effectiveness can be diminished by various factors. The over-expression of PD-L1 has been identified as a critical reason for radiotherapy resistance. Previous studies have demonstrated that nifuroxazide exerts antitumor activity by damaging the Stat3 pathway, but its efficacy against PD-L1 has remained unclear. In this study, we investigated whether nifuroxazide could enhance the efficacy of radiotherapy in HCC by reducing PD-L1 expression. Our results showed that nifuroxazide significantly increased the sensitivity of tumor cells to radiation therapy by inhibiting cell proliferation and migration while increasing apoptosis in vitro. Additionally, nifuroxazide attenuated the up-regulation of PD-L1 expression induced by irradiation, which may be associated with increased degradation of PD-L1 through the ubiquitination-proteasome pathway. Furthermore, nifuroxazide greatly enhanced the efficacy of radiation therapy in H22-bearing mice by inhibiting tumor growth, improving survival, boosting the activation of T lymphocytes, and decelerating the ratios of Treg cells in spleens. Importantly, nifuroxazide limited the increased expression of PD-L1 in tumor tissues induced by radiation therapy. This study confirms, for the first time, that nifuroxazide can augment PD-L1 degradation to improve the efficacy of radiation therapy in HCC-bearing mice.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitrofuranos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Antígeno B7-H1 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , HidroxibenzoatosRESUMO
Interleukin-33ï¼IL-33), is constitutively expressed in the epithelial cells of the skin. It has been reported that IL-33 contributed to the severity of the disease in psoriasis-like mouse models. In the current study, we evaluated the effect of anti-IL-33 antibody (Ab) in imiquimod-induced psoriatic dermatitis in mice. Our observations showed that anti-IL-33 Ab ameliorated the erythema, scaling, epidermal thickness and spleen index. Additionally, we found anti-IL-33 Ab significantly decreased the expression of psoriasis-related cytokines. Moreover, anti-IL-33 Ab significantly reduced Ki-67 positive cells, CD3+CD4+T cells, and CD3+CD8+T cells in the skin lesions. Furthermore, anti-IL-33 Ab treatment down-regulated the expression of phosphorylation of STAT3 and IL-33 in model mouse. These results indicated that the anti-IL-33 Ab alleviated the seriousness of skin lesions, inhibited the activation of the STAT3, lymphocyte infiltration and the secretion of pro-inflammatory cytokines in imiquimod-induced psoriatic dermatitis in mice, suggesting IL-33 may be a therapeutic target for the treatment of psoriasis.
Assuntos
Dermatite , Psoríase , Animais , Camundongos , Imiquimode/farmacologia , Interleucina-33/metabolismo , Pele/patologia , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Dermatite/patologia , Camundongos Endogâmicos BALB C , Modelos Animais de DoençasRESUMO
Oxaliplatin is a chemotherapy drug currently utilized in the treatment of advanced cancer patients. However, its tolerability poses a limitation to its clinical application. Studies have demonstrated that the presence of tumor-associated macrophages is positively correlated with poor prognosis in various solid tumors, including hepatocellular carcinoma (HCC), and is a significant factor contributing to oxaliplatin resistance. Therefore, targeting tumor-associated macrophages may be an effective strategy to improve the efficacy of oxaliplatin in the treatment of HCC patients. CD24 is a novel target for tumor therapy that can interact with the inhibitory receptor Siglec-10 on tumor-associated macrophages, transmitting immune inhibitory signals and inhibiting macrophage phagocytosis function. In this study, we utilized RNAi technology to inhibit the expression of CD24 in tumor cells and combined it with oxaliplatin, resulting in reduced tumor invasion, migration, and proliferation, as well as increased cell apoptosis. Furthermore, immunofluorescence and flow cytometry results indicated that both the single treatment group and combination treatment group enhanced the infiltration of immune cells. This study presents a novel approach to identifying combination therapy and targets for the clinical treatment of HCC with oxaliplatin.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Transporte , Linhagem Celular Tumoral , Antígeno CD24/genética , Antígeno CD24/metabolismoRESUMO
Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance.
RESUMO
Hepatocellular carcinoma (HCC) is a common malignant tumour in China that remains a major challenge to the medical community, and effective treatment is urgently needed. Due to complex tumorigenesis, monotherapy shows poor therapeutic effects, and combined treatment becomes a necessary option. YW002, a CpG ODN-containing sequence, has been proven to enhance antitumor effects in tumour-bearing mouse models. Moreover, as a broad-spectrum antimicrobial drug, nifuroxazide exhibited an anti-HCC effect through activation of p-Stat3. Here, we tested the effect of nifuroxazide on HCC in vitro and then explored the therapeutic effect of combined nifuroxazide and CpG ODN on HCC in vivo. Nifuroxazide inhibited proliferation, induced apoptosis and suppressed migration and invasion in HepG2 cells in vitro. The combination therapy using nifuroxazide and CpG ODN significantly suppressed the growth of tumours in tumour-bearing mice with few side effects and achieved better therapeutic effects on HCC than monotherapy. Moreover, combined nifuroxazide and CpG ODN therapy significantly induced apoptosis, enhanced the infiltration of CD4+ and CD8+ T lymphocytes and macrophages in tumour tissue, and increased the ratio of CD4+ and CD8+ T lymphocytes in the spleens of tumour-bearing mice. The introduction of this combination therapy combining nifuroxazide and CpG ODN provided a new strategy for HCC treatment.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitrofuranos , Adjuvantes Imunológicos/uso terapêutico , Animais , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Nitrofuranos/uso terapêutico , Oligodesoxirribonucleotídeos/farmacologiaRESUMO
Species of Blastocystis Alexieff, 1911 are anaerobic intestinal protists found in humans and many kinds of animals that mainly cause diarrhea, abdominal pain and other clinical symptoms. At present, data on the prevalence and subtype diversity of species of Blastocystis in domestic rabbits are very limited. The purpose of this study was to characterise the infection rate and gene subtype distribution of Blastocystis sp. in domestic rabbits in Henan Province, Central China, and provide foundation for prevention and control of the disease caused by Blastocystis sp. in domestic rabbits. DNA was extracted from 286 fresh rabbit faecal samples collected from four areas of Henan Province, Central China. All DNA samples were screened using PCR and positive samples were sequenced to identify individual subtypes based on the small ribosomal subunit (SSU rRNA) gene. The overall infection rate of Blastocystis sp. in domestic rabbits in Henan Province was 15% (43/286). Three subtypes were identified, including ST1 (26/43, 60%), ST3 (5/43, 12%) and ST7 (12/43, 28%), all of which belonged to potentially zoonotic subtypes, ST1 was the dominant gene subtype. These results showed that infection with Blastocystis sp. was common in domestic rabbits in Henan Province, Central China, and was represented by zoonotic subtypes. Therefore, special attention should be paid to reduce the risk of transmission of Blastocystis sp. from domestic rabbits to humans.
Assuntos
Blastocystis , Animais , Humanos , Coelhos , Blastocystis/genética , Prevalência , Subunidades Ribossômicas Menores , China/epidemiologia , FezesRESUMO
Antibodies (Abs) have been widely used in both immunodiagnostics and immunotherapy for the treatment of various diseases and, in recent years, scientific research applications. With the increasing use of Abs, there has been an urgent demand for low-cost and highly efficient purification methods. In this study, we present a novel formulation based on a ß-d-glucan particle loaded protein A/G (GP-protein A/G conjugates) by the carbodiimide method for the purification of immunoglobulin (IgG) antibodies. The prepared GP-protein A/G conjugates exhibit high stability and isolation efficiency. The microspheres also constitute an essential specialty reagent useful for isolating IgG from mammalian species such as goat, mouse and rabbit. Recovery of IgG showed that up to a purity of 92% was reached in the elution step. In addition, they has been shown to be important tools for molecular purification methods such as immunoprecipitation and co-immunoprecipitation. Taken together, these results suggest that the GP-protein A/G system has the potential to be used as a platform for purification techniques.
Assuntos
Glucanos/química , Microesferas , Proteína Estafilocócica A/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Imunoprecipitação , Camundongos , CoelhosRESUMO
New strategies with the ability to enhance both the humoral and cellular immune responses remain a priority for the development of future therapeutic cancer vaccines. In this study, we took advantage of ß-glucan particles (GPs) derived from Saccharomyces cerevisiae baker's yeast and a novel reverse micro-emulsion method to prepare an antigen-loaded GP carrier system for dendritic cell (DC) specific antigen delivery, followed by careful evaluation of the immune functions of the prepared particles in initiating both the humoral and cellular immune responses through in vitro and in vivo experiments. The prepared particles greatly promoted DC activation and cytokine production and cross presented the antigen to CD8 cells, inducing very strong OVA specific humoral and cellular immune responses. Treatment with these particles significantly prevented the growth of implanted EG7-OVA tumors in a prophylactic and pre-established tumor model. These results suggest that our strategy may be able to be utilized as a promising platform for cancer immunotherapy.
Assuntos
Imunidade Celular/fisiologia , Imunidade Humoral/fisiologia , Neoplasias/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Metastasis followed by the tumor development is the primary cause of death for cancer patients. However, the underlying molecular mechanisms of how the growth of tumor resulted in the immune suppression, especially at the blood-enriched organ such as liver, were largely unknown. In this report, we studied the liver immune response of tumor-bearing (TB) mice using concanavalin A (Con A)-induced hepatitis model. We demonstrated that TB mice displayed an immune suppression phenotype, with attenuated alanine aminotransferase levels and liver damage upon Con A treatment. We also elucidated that large amounts of myeloid-derived suppressor cells (MDSCs) being influx into the liver in TB mice and these MDSCs were essential for liver immune suppression through both depletion and reconstitution approaches. We further determined that these MDSCs selectively suppressed the IFN-γ production deriving from NKT cells through membrane-bound transforming growth factor ß (TGF-ß). Finally, we defined a tumor-derived TGF-ß-triggered CXCL1/2/5- and CXCR2-dependent recruitment of MDSC into the liver. In summary, our results defined a novel mechanism of liver immune suppression triggered by growing living tumor and provided possible therapeutic targets against these MDSCs.
RESUMO
Esophageal cancer is one of the most prevalent forms of cancer and has a particularly high mortality rate due to early metastasis; however, the underlying mechanisms of its formation and progression remain unclear. The present study performed immunohistochemical analysis and observed that the expression of activating transcription factor 3 (ATF3) was reduced in esophageal squamous cell carcinoma (ESCC) in comparison with non-tumor adjacent tissues. By contrast, inhibitor of DNA binding 1 (ID1) was overexpressed in ESCC tissues, demonstrating an inverse correlation with ATF3 (P<0.01). In ESCC EC109 and KYSE450 cells lines, transfection with an ATF3-overexpression plasmid resulted in the inhibition of cell proliferation, motility and migration, which was associated with the induction of E-cadherin expression and inhibition of cyclin D1 and Twist. Notably, ATF3 exerted an inverse regulatory interaction with ID1. The results of the present study provide additional evidence of the tumor suppressive features of ATF3 and demonstrate a novel mechanism of ATF3-mediated inhibition of cancer metastasis in esophageal cancer.
RESUMO
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl from lysine residues in histones and other proteins, which results in gene transcriptional repression and subsequent changes in signaling events. HDACs inhibitors (HDACIs) have been used to reverse the aberrant epigenetic changes associated with cancer. However, the effects of HDACIs on epithelial-mesenchymal transition (EMT) in human cancer cells remain unclear. EMT is a fundamental process governing morphogenesis in multicellular organisms and promotes cancer invasion and metastasis. In this study, human cancer cells were treated with the HDACI trichostatin A (TSA). TSA was found to induce mesenchymallike morphological changes in BGC-823 human gastric cancer and MCF-7 breast cancer cells, and increase the expression levels of the mesenchymal markers Vimentin and Twist. However, the expression levels of the epithelial cell marker E-cadherin were also increased in response to TSA treatment, while cell migration was reduced by TSA. Furthermore, TSA decreased cancer cell colony formation in BGC-823 and MCF-7 cells, and led to the deregulation of ß-catenin, a critical signaling molecule involved in EMT. In conclusion, the results suggested that TSA exhibits dual functions in EMT induction and inhibition in human cancer cells, but the detailed mechanisms require further investigation.