Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.738
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(6): 1387-1401.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412859

RESUMO

The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.


Assuntos
Proteínas do Tecido Nervoso , Degeneração Retiniana , Animais , Camundongos , Translocação Bacteriana , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
2.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614091

RESUMO

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Assuntos
Interleucina-33 , Mastócitos , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Animais , Camundongos , Comunicação Celular/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Interleucina-33/metabolismo , Interleucina-33/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo
3.
Nat Immunol ; 18(5): 519-529, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346409

RESUMO

Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/patologia , Endorribonucleases/metabolismo , Macrófagos/fisiologia , Obesidade/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Metabolismo Energético/genética , Humanos , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
4.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
5.
Cell ; 149(7): 1549-64, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726441

RESUMO

Secretory fibroblast growth factors (FGFs) and their receptors are known for their regulatory function in the early stages of neural development. FGF13, a nonsecretory protein of the FGF family, is expressed in cerebral cortical neurons during development and is a candidate gene for syndromal and nonspecific forms of X-chromosome-linked mental retardation (XLMR). However, its function during development remains unclear. We show that FGF13 acts intracellularly as a microtubule-stabilizing protein required for axon and leading process development and neuronal migration in the cerebral cortex. FGF13 is enriched in axonal growth cones and interacts directly with microtubules. Furthermore, FGF13 polymerizes tubulins and stabilizes microtubules. The loss of FGF13 impairs neuronal polarization and increases the branching of axons and leading processes. Genetic deletion of FGF13 in mice results in neuronal migration defects in both the neocortex and the hippocampus. FGF13-deficient mice also exhibit weakened learning and memory, which is correlated to XLMR patients' intellectual disability.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Movimento Celular , Polaridade Celular , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Cones de Crescimento/metabolismo , Hipocampo/citologia , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Dados de Sequência Molecular , Polimerização , Tubulina (Proteína)/metabolismo
6.
PLoS Genet ; 20(7): e1011339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980841

RESUMO

BACKGROUND: Varicose veins (VV) are one of the common human diseases, but the role of genetics in its development is not fully understood. METHODS: We conducted an exome-wide association study of VV using whole-exome sequencing data from the UK Biobank, and focused on common and rare variants using single-variant association analysis and gene-level collapsing analysis. FINDINGS: A total of 13,823,269 autosomal genetic variants were obtained after quality control. We identified 36 VV-related independent common variants mapping to 34 genes by single-variant analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associations between genes and VV were replicated in FinnGen. PIEZO1 was the closest gene associated with VV (P = 5.05 × 10-31), and it was found to reach exome-wide significance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1 and METTL21A) associated with VV were identified, of which METTL21A was associated only with females. The pleiotropic effects of VV-related genes suggested that body size, inflammation, and pulmonary function are strongly associated with the development of VV. CONCLUSIONS: Our findings highlight the importance of causal genes for VV and provide new directions for treatment.


Assuntos
Sequenciamento do Exoma , Exoma , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Varizes , Humanos , Varizes/genética , Feminino , Masculino , Exoma/genética , Polimorfismo de Nucleotídeo Único , Enzimas Conversoras de Endotelina/genética , Pessoa de Meia-Idade , Variação Genética , Adulto , Canais Iônicos
7.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602510

RESUMO

Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.


Assuntos
Núcleo Celular , Drosophila , Animais , Difusão , Embrião de Mamíferos , Optogenética
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678388

RESUMO

Cyclic peptides offer a range of notable advantages, including potent antibacterial properties, high binding affinity and specificity to target molecules, and minimal toxicity, making them highly promising candidates for drug development. However, a comprehensive database that consolidates both synthetically derived and naturally occurring cyclic peptides is conspicuously absent. To address this void, we introduce CyclicPepedia (https://www.biosino.org/iMAC/cyclicpepedia/), a pioneering database that encompasses 8744 known cyclic peptides. This repository, structured as a composite knowledge network, offers a wealth of information encompassing various aspects of cyclic peptides, such as cyclic peptides' sources, categorizations, structural characteristics, pharmacokinetic profiles, physicochemical properties, patented drug applications, and a collection of crucial publications. Supported by a user-friendly knowledge retrieval system and calculation tools specifically designed for cyclic peptides, CyclicPepedia will be able to facilitate advancements in cyclic peptide drug development.


Assuntos
Bases de Conhecimento , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Bases de Dados de Proteínas
9.
Proc Natl Acad Sci U S A ; 120(39): e2310142120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725644

RESUMO

This paper introduces the paradigm of "in-context operator learning" and the corresponding model "In-Context Operator Networks" to simultaneously learn operators from the prompted data and apply it to new questions during the inference stage, without any weight update. Existing methods are limited to using a neural network to approximate a specific equation solution or a specific operator, requiring retraining when switching to a new problem with different equations. By training a single neural network as an operator learner, rather than a solution/operator approximator, we can not only get rid of retraining (even fine-tuning) the neural network for new problems but also leverage the commonalities shared across operators so that only a few examples in the prompt are needed when learning a new operator. Our numerical results show the capability of a single neural network as a few-shot operator learner for a diversified type of differential equation problems, including forward and inverse problems of ordinary differential equations, partial differential equations, and mean-field control problems, and also show that it can generalize its learning capability to operators beyond the training distribution.

10.
Proc Natl Acad Sci U S A ; 120(5): e2214684120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693099

RESUMO

Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Camundongos , Humanos , Animais , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Implantação do Embrião/genética , Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo
11.
RNA ; 29(11): 1691-1702, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536954

RESUMO

Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.


Assuntos
RNA de Cadeia Dupla , Ribonuclease H , Ribonuclease H/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Transcrição Gênica
12.
Plant Physiol ; 194(4): 2491-2510, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039148

RESUMO

Passion fruit (Passiflora edulis) possesses a complex aroma and is widely grown in tropical and subtropical areas. Here, we conducted the de novo assembly, annotation, and comparison of PPF (P. edulis Sims) and YPF (P. edulis f. flavicarpa) reference genomes using PacBio, Illumina, and Hi-C technologies. Notably, we discovered evidence of recent whole-genome duplication events in P. edulis genomes. Comparative analysis revealed 7.6∼8.1 million single nucleotide polymorphisms, 1 million insertions/deletions, and over 142 Mb presence/absence variations among different P. edulis genomes. During the ripening of yellow passion fruit, metabolites related to flavor, aroma, and color were substantially accumulated or changed. Through joint analysis of genomic variations, differentially expressed genes, and accumulated metabolites, we explored candidate genes associated with flavor, aroma, and color distinctions. Flavonoid biosynthesis pathways, anthocyanin biosynthesis pathways, and related metabolites are pivotal factors affecting the coloration of passion fruit, and terpenoid metabolites accumulated more in PPF. Finally, by heterologous expression in yeast (Saccharomyces cerevisiae), we functionally characterized 12 terpene synthases. Our findings revealed that certain TPS homologs in both YPF and PPF varieties produce identical terpene products, while others yield distinct compounds or even lose their functionality. These discoveries revealed the genetic and metabolic basis of unique characteristics in aroma and flavor between the 2 passion fruit varieties. This study provides resources for better understanding the genome architecture and accelerating genetic improvement of passion fruits.


Assuntos
Frutas , Passiflora , Frutas/genética , Odorantes , Passiflora/genética , Passiflora/metabolismo , Multiômica , Terpenos/metabolismo
13.
FASEB J ; 38(17): e70038, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39250169

RESUMO

Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.


Assuntos
Doenças Metabólicas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Doenças Metabólicas/genética , Obesidade/metabolismo , Obesidade/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/terapia , Fígado Gorduroso/etiologia
14.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38715408

RESUMO

Speech comprehension in noise depends on complex interactions between peripheral sensory and central cognitive systems. Despite having normal peripheral hearing, older adults show difficulties in speech comprehension. It remains unclear whether the brain's neural responses could indicate aging. The current study examined whether individual brain activation during speech perception in different listening environments could predict age. We applied functional near-infrared spectroscopy to 93 normal-hearing human adults (20 to 70 years old) during a sentence listening task, which contained a quiet condition and 4 different signal-to-noise ratios (SNR = 10, 5, 0, -5 dB) noisy conditions. A data-driven approach, the region-based brain-age predictive modeling was adopted. We observed a significant behavioral decrease with age under the 4 noisy conditions, but not under the quiet condition. Brain activations in SNR = 10 dB listening condition could successfully predict individual's age. Moreover, we found that the bilateral visual sensory cortex, left dorsal speech pathway, left cerebellum, right temporal-parietal junction area, right homolog Wernicke's area, and right middle temporal gyrus contributed most to prediction performance. These results demonstrate that the activations of regions about sensory-motor mapping of sound, especially in noisy conditions, could be sensitive measures for age prediction than external behavior measures.


Assuntos
Envelhecimento , Encéfalo , Compreensão , Ruído , Espectroscopia de Luz Próxima ao Infravermelho , Percepção da Fala , Humanos , Adulto , Percepção da Fala/fisiologia , Masculino , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Compreensão/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Estimulação Acústica/métodos
15.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38163443

RESUMO

The onset of hearing loss can lead to altered brain structure and functions. However, hearing restoration may also result in distinct cortical reorganization. A differential pattern of functional remodeling was observed between post- and prelingual cochlear implant users, but it remains unclear how these speech processing networks are reorganized after cochlear implantation. To explore the impact of language acquisition and hearing restoration on speech perception in cochlear implant users, we conducted assessments of brain activation, functional connectivity, and graph theory-based analysis using functional near-infrared spectroscopy. We examined the effects of speech-in-noise stimuli on three groups: postlingual cochlear implant users (n = 12), prelingual cochlear implant users (n = 10), and age-matched individuals with hearing controls (HC) (n = 22). The activation of auditory-related areas in cochlear implant users showed a lower response compared with the HC group. Wernicke's area and Broca's area demonstrated differences network attributes in speech processing networks in post- and prelingual cochlear implant users. In addition, cochlear implant users maintain a high efficiency of the speech processing network to process speech information. Taken together, our results characterize the speech processing networks, in varying noise environments, in post- and prelingual cochlear implant users and provide new insights for theories of how implantation modes impact remodeling of the speech processing functional networks.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Humanos , Fala , Surdez/cirurgia , Audição , Percepção da Fala/fisiologia
16.
Proc Natl Acad Sci U S A ; 119(15): e2112892119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412853

RESUMO

During early Drosophila embryogenesis, a network of gene regulatory interactions orchestrates terminal patterning, playing a critical role in the subsequent formation of the gut. We utilized CRISPR gene editing at endogenous loci to create live reporters of transcription and light-sheet microscopy to monitor the individual components of the posterior gut patterning network across 90 min prior to gastrulation. We developed a computational approach for fusing imaging datasets of the individual components into a common multivariable trajectory. Data fusion revealed low intrinsic dimensionality of posterior patterning and cell fate specification in wild-type embryos. The simple structure that we uncovered allowed us to construct a model of interactions within the posterior patterning regulatory network and make testable predictions about its dynamics at the protein level. The presented data fusion strategy is a step toward establishing a unified framework that would explore how stochastic spatiotemporal signals give rise to highly reproducible morphogenetic outcomes.


Assuntos
Padronização Corporal , Proteínas de Drosophila , Drosophila melanogaster , Endoderma , Redes Reguladoras de Genes , Animais , Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Endoderma/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento
17.
BMC Biol ; 22(1): 111, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741075

RESUMO

BACKGROUND: Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS: In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS: These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.


Assuntos
Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster , Hormônios Juvenis , Animais , Corpora Allata/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hormônios Juvenis/biossíntese , Hormônios Juvenis/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Metamorfose Biológica/genética , Oxirredutases , Pupa/crescimento & desenvolvimento , Pupa/genética , Pupa/metabolismo
18.
Nano Lett ; 24(3): 966-974, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206580

RESUMO

Two-dimensional (2D) Fe chalcogenides with their rich structures and properties are highly desirable for revealing the torturous transition mechanism of Fe chalcogenides and exploring their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate phase transitions between various ordered states, allowing one to successfully plot a phase diagram for a given material. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions by comparing two distinct symmetries, i.e., tetragonal (t) and hexagonal (h) FeTe. We found that t-FeTe presented a pressure-induced transition from an antiferromagnetic state to a ferromagnetic state at ∼3 GPa, corresponding to the tetragonal collapse of the layered structure. Contrarily, the ferromagnetic order of h-FeTe was retained up to 15 GPa, which was evidently confirmed by electrical transport and Raman measurements. Furthermore, T-P phase diagrams for t-FeTe and h-FeTe were mapped under delicate critical conditions. Our results can provide a unique platform to elaborate the extraordinary properties of Fe chalcogenides and further develop their applications.

19.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613362

RESUMO

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Assuntos
Glomerulonefrite , Extratos Vegetais , Testosterona , Masculino , Animais , Camundongos , Células Intersticiais do Testículo , Curcuma , Hidrocortisona , Deficiência da Energia Yang
20.
Dev Biol ; 504: 49-57, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741309

RESUMO

SAM and SH3 domain-containing 1 (SASH1), a member of the SLy protein family, is a tumor suppressor gene that has been studied for its association with various cancers. SASH1 is highly expressed in the mammalian central nervous system, particularly in glial cells, and is expressed in the central nervous system during zebrafish embryo development. However, SASH1's role in brain development has rarely been investigated. In this study, Morpholino oligonucleotides (MO) were used to down-regulate sash1a expression in zebrafish to observe morphological changes in the brain. Three transgenic zebrafish lines, Tg(gfap:eGFP), Tg(hb9:eGFP), and Tg(coro1a:eGFP) were selected to observe changes in glial cells, neurons, and immune cells after sash1a knockdown. Our results showed that the number of microglia residing in the developmental brain was reduced, whereas the axonal growth of caudal primary motor neurons was unaffected by sash1a downregulation. And more significantly, the gfap + glia presented abnormal arrangements and disordered orientations in sash1a morphants. The similar phenotype was verified in the mutation induced by the injection of cas9 mRNA and sash1a sgRNA. We further performed behavioral experiments in zebrafish larvae that had been injected with sash1a MO at one-cell stage, and found them exhibiting abnormal behavior trajectories. Moreover, injecting the human SASH1 mRNA rescued these phenomena in sash1a MO zebrafish. In summary, our study revealed that the downregulation of SASH1 leads to malformations in the embryonic brain and disorganization of glial cell marshalling, suggesting that SASH1 plays an important role in the migration of glial cells during embryonic brain development.


Assuntos
Proteínas Supressoras de Tumor , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Sistema Nervoso Central/metabolismo , Movimento Celular/genética , RNA Mensageiro , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA