Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Orthop Sci ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065793

RESUMO

BACKGROUND: Pelvis experiences changes in its orientation due to the alignment of the hip joint and spine, and its orientation might affect both joints. Pelvic tilt on the sagittal plane has been widely discussed; however, the pelvis is oriented also on the coronal and horizontal planes. This study aimed to examine how stress distribution on intact hip joint changes under the three-dimensional pelvic orientation. METHODS: Computed tomography data of five patients with unilateral pelvic girdle were analyzed. Thirteen models were evaluated by the MECHANICAL FINDER: neutral position at 0°; 10° and 20° anterior and posterior pelvic tilt; 10° and 20° pelvic hike and drop; 10° and 20° pelvic forward and backward rotation. Stress assessment was performed in four parts of the acetabulum: anterosuperior, posterosuperior, posteroinferior, and central parts. RESULTS: Compared with the neutral position, the mean value of the equivalent stress and maximum principal stress in the anterosuperior part significantly increased by 1.51 times and 1.57 times at 20° posterior tilt, respectively. The maximum principal stress in the anterosuperior part significantly increased by 1.44 times at 20° hike. A significant increase of 1.45 times was found in the maximum principal stress in the anterosuperior part at 20° forward rotation. CONCLUSIONS: Local stress accumulated in the anterosuperior acetabulum at the posterior pelvic tilt, pelvic hike, and pelvic forward rotation, which might lead to hip overload. The effect of posterior pelvic tilt appears to be greater for the hip joint than at the pelvic hike or forward rotation.

2.
Injury ; 54(12): 111163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939634

RESUMO

INTRODUCTION: Exchange nailing (EN) or augmentation plating (AP) has been employed to treat nonunions after intramedullary nailing for femoral shaft fractures. Although instability is a factor in hypertrophic nonunion, mechanical evaluations have been limited because the contribution of the callus to fracture site stability varies with healing. Our previous study illustrated the potential for evaluation using a finite element analysis (FEA) that incorporates callus material properties. This study aimed to mechanically evaluate revision surgery for nonunions using FEA. MATERIALS AND METHODS: A quantitative computed tomography-based FEA was performed on virtual revision models of a patient with suspected nonunion after intramedullary nailing. In addition to the initial nailing model (IN) with an 11-mm diameter (D) and 360-mm length (L), four EN models with D12mm (EN1), D13mm (EN2), D12mm-L400mm (EN3), and D13mm-L400mm (EN4) nails and three AP models with 5- (AP1), 6- (AP2), and 7-hole (AP3) plates were created. As with bone, callus was assigned inhomogeneous material properties derived from density based on an empirical formula. The hip joint reaction force and muscle forces at maximum load during the gait cycle were applied. The volume ratio of the callus at the fracture site with a tensile failure risk of ≥1 (tensile failure ratio) and bone fragment movement were evaluated. RESULTS: The tensile failure ratio was 11.6 % (IN), 10.1 % (EN1), 6.3 % (EN2), 10.9 % (EN3), 6.2 % (EN4), 6.4 % (AP1), 7.2 % (AP2), and 7.7 % (AP3), respectively. The bone fragment movement showed an opening on the lateral side with the initial intramedullary nailing. However, both revision surgeries reduced the opening, leading to compression except in the EN1 model. The proximal bone fragments were internally rotated relative to the distal fragments, and the rotational instability was more suppressed in models with lower tensile failure ratio. CONCLUSIONS: For EN, the increase in diameter, not length, is important to suppress instability. AP reduces instability, comparable to a 2 mm increase in nail diameter, and screw fixation closer to the fracture site reduces instability. This study suggest that AP is mechanically equivalent to EN and could be an option for revision surgery for femoral shaft nonunions.


Assuntos
Fixação Intramedular de Fraturas , Fraturas não Consolidadas , Humanos , Reoperação , Resultado do Tratamento , Pinos Ortopédicos , Estudos Retrospectivos , Fraturas não Consolidadas/diagnóstico por imagem , Fraturas não Consolidadas/cirurgia
3.
Clin Biomech (Bristol, Avon) ; 100: 105790, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327546

RESUMO

BACKGROUND: There is no proven method for quantitative evaluation of bone healing progress or decision to remove the nail after intramedullary nailing for femoral shaft fractures. Finite element analysis has become commonly utilized in bone analysis, but it may also be used to evaluate callus. The goal of this study was to use quantitative CT-based finite element analysis to assess the bone healing process and predict bone strength with the nail removed. METHODS: Quantitative CT-based finite element analysis was conducted on CT images from patients who had intramedullary nailing after a femoral shaft fracture at 6, 12, and 15 months postoperatively. The failure risk of the callus was evaluated with maximal load throughout the gait cycle. The tensile failure ratio was calculated using the volume ratio of the callus element with a tensile failure risk ≥100%. A virtual model with the nail removed was built for bone strength study, and the strength was calculated using the displacement-load curve. FINDINGS: The tensile failure ratio reduced with time, reaching 11.6%, 2.6%, and 0.5% at 6, 12, and 15 months postoperatively, respectively, consistent with bone healing inferred from imaging results. At 15 months, the bone strength at nail removal grew to 212, 2670, and 3385 N, surpassing the healthy side's 2766 N. INTERPRETATION: Quantitative CT-based finite element analysis enables mechanical assessment during the bone healing process and is expected to be applied to the selection of revision surgery. It is also applicable to the nail removal decision.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Humanos , Análise de Elementos Finitos
4.
Bone ; 158: 116352, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181576

RESUMO

BACKGROUND: Proximal femur fractures are usually categorized as either a cervical or trochanteric fracture, but the relationship between fracture type and fall direction is not clear. By cadaveric mechanical testing and finite element analysis (FEA), the aims of this research were to verify the factors that define the proximal femur fracture type and to clarify the change in stress distribution based on fall direction. METHODS: From fresh frozen cadavers, we obtained 26 proximal femora including ten pairs of 20 femora. We conducted quasi-static compression tests in two fall patterns (lateral and posterolateral), and identified the fracture type. We then examined the relationship between fracture type and the following explanatory variables: age, sex, neck shaft angle, femoral neck length, bone mineral density (cervical and trochanteric), and fall direction. In addition, for the ten pairs of femurs, the effect of fall direction on fracture type was examined by comparing the left and right sides. In addition, we generated the proximal femur finite element (FE) models from computed tomography data to simulate and verify the change of external force in different fall directions. RESULTS: In mechanical tests, only fall direction was found to have a significant relationship with fracture type (p = 0.0227). The posterolateral fall group had a significantly higher incidence of trochanteric fractures than lateral fall group (p = 0.0325). According to FEA, the equivalent stress in the lateral fall was found to be more concentrated in the cervical area than in the posterolateral fall. CONCLUSION: In proximal femur fractures, fall direction was significantly associated with fracture type; in particular, trochanteric fractures were more likely to occur following a posterolateral fall than a lateral fall.


Assuntos
Fraturas do Fêmur , Fraturas do Quadril , Cadáver , Fêmur , Análise de Elementos Finitos , Humanos
6.
J Neurosurg Spine ; 26(2): 203-207, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27716018

RESUMO

Pelvic ring fractures are defined as life-threatening injuries that can be treated surgically with external or internal fixation. The authors report on an 81-year-old woman with an unstable pelvic fracture accompanying multiple traumas that was successfully treated with a less invasive procedure. The patient was injured in a traffic accident and sustained a total of 20 fractures, including pelvic ring, bilateral rib, and lumbar transverse processes fractures, and multiple fractures of both upper and lower extremities. The pelvic ring fracture was unstable with fractures of the bilateral sacrum with right sacroiliac disruption, right superior and inferior pubic rami, left superior pubic ramus, and ischium. During emergency surgery, bilateral external fixation was applied to the iliac crest to stabilize the pelvic ring. Second and third surgeries were performed 11 and 18 days after the first emergency surgery, respectively, to treat the multiple fractures. At the third surgery, the pelvic ring fracture was stabilized surgically using a less invasive posterior fixation technique. In this technique, 2 iliac screws were inserted on each side following an 8-cm midline posterior incision from the S-1 to S-3 spinous process, with the subcutaneous tissue detached from the fascia of the paraspinal muscles. The S-2 spinous process was removed and 2 rods were connected to bilateral iliac screws to stabilize the bilateral ilium in a switchback fashion. A crosslink device was applied to connect the 2 rods at the base of the S-2 spinous process. Following pelvic fixation, percutaneous pedicle screws were inserted into L-4 and L-5 vertebral bodies on both sides, and connected to the cranial rod connecting the bilateral iliac screws, thus completing the lumbopelvic fixation. The postoperative course was favorable with no postoperative complications. At the 10-month follow-up, bone union had been achieved at the superior ramus of the pubis, the patient did not complain of pain, and her activities of daily life returned to preinjury status. Unstable pelvic ring fractures need to be sufficiently stabilized for good surgical outcome. However, to avoid postoperative complications, a less invasive treatment is preferred, particularly in cases with poor general condition. This procedure is less invasive and provides sufficient stabilization to the unstable pelvic ring fracture, and thus is the ideal surgical procedure for such cases.


Assuntos
Fixação Interna de Fraturas/métodos , Fraturas Múltiplas/cirurgia , Vértebras Lombares/cirurgia , Parafusos Pediculares , Ossos Pélvicos/lesões , Ossos Pélvicos/cirurgia , Acidentes de Trânsito , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Fixação Interna de Fraturas/instrumentação , Fraturas Múltiplas/diagnóstico por imagem , Fraturas Múltiplas/etiologia , Humanos , Vértebras Lombares/diagnóstico por imagem , Ossos Pélvicos/diagnóstico por imagem , Recuperação de Função Fisiológica , Sacro/diagnóstico por imagem , Sacro/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA