Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772564

RESUMO

With the development of wireless technology, signals propagating in space are easy to mix, so blind detection of communication signals has become a very practical and challenging problem. In this paper, we propose a blind detection method for broadband signals based on a weighted bi-directional feature pyramid network (BiFPN). The method can quickly perform detection and automatic modulation identification (AMC) on time-domain aliased signals in broadband data. Firstly, the method performs a time-frequency analysis on the received signals and extracts the normalized time-frequency images and the corresponding labels by short-time Fourier transform (STFT). Secondly, we build a target detection model based on YOLOv5 for time-domain mixed signals in broadband data and learn the features of the time-frequency distribution image dataset of broadband signals, which achieves the purpose of training the model. The main improvements of the algorithm are as follows: (1) a weighted bi-directional feature pyramid network is used to achieve a simple and fast multi-scale feature fusion approach to improve the detection probability; (2) the Efficient-Intersection over Union (EIOU) loss function is introduced to achieve high accuracy signal detection in a low Signal-Noise Ratio (SNR) environment. Finally, the time-frequency images are detected by an improved deep network model to complete the blind detection of time-domain mixed signals. The simulation results show that the method can effectively detect the continuous and burst signals in the broadband communication signal data and identify their modulation types.

2.
Vaccine ; 41(18): 2905-2913, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37005103

RESUMO

Avian influenza virus (AIV) poses a great threat to the poultry industry and public health. However commercial vaccines only provide limited immunity due to rapid virus mutation and rearrangement. Here, we developed an mRNA-lipid nanoparticle (mRNA-LNP) vaccine expressing AIV immunogenic protein hemagglutinin (HA) and also assessed its safety and immune-protection efficacy in vivo. Specifically, its safety was tested by inoculation of SPF chicken embryos and chicks, and there showed no clinical manifestations and pathological changes in both. As for the immune efficacy, the antibody titers, IFN-γ production levels, and viral loads in various organs were analyzed. The results showed that chickens in the mRNA-LNP-inoculated groups produced higher specific antibody titers compared with that in the control group by hemagglutination inhibition (HI) test. Meanwhile, the ELISpot assay demonstrated that the expression of IFN-γ was markedly induced in the mRNA-LNP group, and the viral loads in multiple organs were decreased. In addition, HE shows no obvious pathomorphological changes in the lungs of the mRNA-LNP-inoculated group. While, there was severe inflammatory cell infiltration in the DMEM-treated group instead. Taken together, the vaccine prepared in this study was safe and could trigger potent cellular and humoral immune response to defend against virus infection.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Animais , Embrião de Galinha , Galinhas , Influenza Aviária/prevenção & controle , Hemaglutininas , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA