Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(7): 3570-3577, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307328

RESUMO

Selective delivery of chemotherapy to the tumor site while sparing healthy cells and tissues is an attractive approach for cancer treatment. Carriers such as peptides can facilitate selective tumor targeting and payload delivery. Peptides with specific affinity for the overexpressed cell-surface receptors in cancer cells are conjugated to chemotherapy to afford peptide-drug conjugates (PDCs) that show selective uptake by cancer cells. Using a 10-mer linear peptide (WxEAAYQrFL) called 18-4 that targets and binds breast cancer cells, we designed a peptide 18-4-doxorubicin (Dox) conjugate with high specific toxicity toward triple-negative breast cancer (TNBC) MDA-MB-231 cells and 30-fold lower toxicity to normal breast MCF10A epithelial cells. Here, we elucidate the in vivo activity of this potent and tumor-selective peptide 18-4-Dox conjugate in mice bearing orthotopic MDA-MB-231 tumors. Mice treated with four weekly injections of the conjugate showed significantly lower tumor volumes compared to mice treated with free Dox at an equivalent Dox dose. Immunohistochemical (IHC) analysis of mice tissues revealed that treatment with a low dose of PDC (2.5 mg/kg of Dox equiv) reduced the expression of proliferation markers (PCNA and Ki-67) and increased apoptosis (evidenced by increased caspase-3 expression). At the same dose of free Dox (2.5 mg/kg), the expression of these markers was similar to that of saline treatment. Accordingly, significantly more Dox accumulated in tumors of conjugate-treated mice (7-fold) compared to the Dox-treated mice, while lower levels of Dox were observed in the liver, heart, and lungs of peptide-Dox conjugate-treated mice (up to 3-fold less) than Dox-treated mice. The IHC analysis of keratin 1 (K1), the receptor for peptide 18-4, revealed K1 upregulation in tumors and low levels in normal mammary fat pad and liver tissues from mice, suggesting preferential uptake of PDCs by TNBC to be K1 receptor-mediated. Taken together, our data support the use of a PDC approach to deliver chemotherapy selectively to the TNBC to inhibit tumor growth.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Queratina-1 , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Peptídeos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico
2.
Cell Mol Gastroenterol Hepatol ; 9(2): 295-312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31606566

RESUMO

BACKGROUND AND AIMS: Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. METHODS: Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKß in IEC (Ikkß(EE)IEC), Ripk1D138N/D138N knockin mice, and Ripk3-/- mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. RESULTS: NF-κB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkß(EE)IEC mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKß facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. CONCLUSIONS: Contrary to common expectations, chronic NF-κB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD.


Assuntos
Apoptose/imunologia , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Mucosa Intestinal/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Transcrição RelA/metabolismo , Adulto , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Colonoscopia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Técnicas de Introdução de Genes , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Íleo/imunologia , Íleo/patologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Camundongos Knockout , Organoides , Cultura Primária de Células , RNA-Seq , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Immunol ; 10: 1094, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164887

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.


Assuntos
Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Animais , Morte Celular , Suscetibilidade a Doenças , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA