Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Circulation ; 132(19): 1825-33, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26432671

RESUMO

BACKGROUND: Statins substantially reduce cardiovascular mortality and appear to have beneficial effects independent of their lipid-lowering properties. We evaluated the hypothesis that statin use may modulate the secretion of aldosterone, a well-known contributor to cardiovascular disease. METHODS AND RESULTS: We measured adrenal hormones in 2 intervention studies. In study 1 in hypertensive subjects, aldosterone was analyzed at baseline and after angiotensin II stimulation on both high- and low-sodium diets (1122 observations, 15% on statins for >3 months). Statin users had 33% lower aldosterone levels in adjusted models (P<0.001). Cortisol was not modified by statins. In secondary analyses, the lowest aldosterone levels were seen with lipophilic statins and with higher doses. Statin users had lower blood pressure and reduced salt sensitivity of blood pressure (both P<0.001). In study 2, aldosterone was measured in diabetic patients on a high-sodium diet, before and after angiotensin II stimulation (143 observations, 79% statin users). Again, statin users had 26% lower aldosterone levels (P=0.006), particularly those using lipophilic statins. Ex vivo studies in rat adrenal glomerulosa cells confirmed that lipophilic statins acutely inhibited aldosterone, but not corticosterone, in response to different secretagogues. CONCLUSIONS: Statin use among hypertensive and diabetic subjects was associated with lower aldosterone secretion in response to angiotensin II and a low-sodium diet in 2 human intervention studies. This effect appeared to be most pronounced with lipophilic statins and higher doses. Future studies to evaluate whether aldosterone inhibition may partially explain the robust cardioprotective effects of statins are warranted.


Assuntos
Glândulas Suprarrenais/metabolismo , Aldosterona/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipertensão/sangue , Hipertensão/diagnóstico , Glândulas Suprarrenais/efeitos dos fármacos , Adulto , Animais , Diabetes Mellitus , Dieta Hipossódica/métodos , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipertensão/terapia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar
2.
J Pharmacol Exp Ther ; 355(1): 32-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26183312

RESUMO

Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1-replete or -deficient states would alter vascular function in a mouse model of low nitric oxide (NO)-high angiotensin II (AngII)-induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1-0.2 mg/ml in drinking water at days 1-11) plus AngII (0.7-2.8 mg/kg per day via an osmotic minipump at days 8-11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1(-/-) mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1(-/-) mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1(-/-) mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1(-/-) versus WT mice, further increased with L-NAME + AngII, and not affected by EPL. Vascular relaxation to the NO donor sodium nitroprusside was increased with L-NAME + AngII in WT mice but not in cav-1(-/-) mice. Plasma aldosterone levels increased and cardiac MR expression decreased in L-NAME + AngII treated WT and cav-1(-/-) mice and did not change with EPL. Thus, during L-NAME + AngII induced hypertension, MR blockade increases contraction and alters vascular relaxation via NO-cGMP, and these changes are absent in cav-1 deficiency states. The data suggest a cooperative role of MR and cav-1 in regulating vascular contraction and NO-cGMP-mediated relaxation during low NO-high AngII-dependent cardiovascular injury.


Assuntos
Angiotensina II/farmacologia , Aorta/efeitos dos fármacos , Sistema Cardiovascular/lesões , Caveolina 1/metabolismo , Óxido Nítrico/deficiência , Receptores de Mineralocorticoides/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Caveolina 1/deficiência , GMP Cíclico/metabolismo , Eplerenona , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/fisiopatologia , Masculino , Camundongos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Modelos Moleculares , NG-Nitroarginina Metil Éster/farmacologia , Conformação de Ácido Nucleico , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Espironolactona/análogos & derivados , Espironolactona/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
3.
J Pharmacol Exp Ther ; 348(2): 260-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24281385

RESUMO

Hyperglycemia and endothelial dysfunction are associated with hypertension, but the specific causality and genetic underpinning are unclear. Caveolin-1 (cav-1) is a plasmalemmal anchoring protein and modulator of vascular function and glucose homeostasis. Cav-1 gene variants are associated with reduced insulin sensitivity in hypertensive individuals, and cav-1(-/-) mice show endothelial dysfunction, hyperglycemia, and increased blood pressure (BP). On the other hand, insulin-sensitizing therapy with metformin may inadequately control hyperglycemia while affecting the vascular outcome in certain patients with diabetes. To test whether the pressor and vascular changes in cav-1 deficiency states are related to hyperglycemia and to assess the vascular mechanisms of metformin under these conditions, wild-type (WT) and cav-1(-/-) mice were treated with either placebo or metformin (400 mg/kg daily for 21 days). BP and fasting blood glucose were in cav-1(-/-) > WT and did not change with metformin. Phenylephrine (Phe)- and KCl-induced aortic contraction was in cav-1(-/-) < WT; endothelium removal, the nitric-oxide synthase (NOS) blocker L-NAME (N(ω)-nitro-L-arginine methyl ester), or soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) enhanced Phe contraction, and metformin blunted this effect. Acetylcholine-induced relaxation was in cav-1(-/-) > WT, abolished by endothelium removal, L-NAME or ODQ, and reduced with metformin. Nitric oxide donor sodium nitroprusside was more potent in inducing relaxation in cav-1(-/-) than in WT, and metformin reversed this effect. Aortic eNOS, AMPK, and sGC were in cav-1(-/-) > WT, and metformin decreased total and phosphorylated eNOS and AMPK in cav-1(-/-). Thus, metformin inhibits both vascular contraction and NO-cGMP-dependent relaxation but does not affect BP or blood glucose in cav-1(-/-) mice, suggesting dissociation of hyperglycemia from altered vascular function in cav-1-deficiency states.


Assuntos
Caveolina 1/metabolismo , Hiperglicemia/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiopatologia , Caveolina 1/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/fisiopatologia , Hipertensão/etiologia , Hipertensão/prevenção & controle , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
4.
Am J Physiol Heart Circ Physiol ; 301(5): H1862-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873498

RESUMO

Histone methylation, a determinant of chromatin structure and gene transcription, was thought to be irreversible, but recent evidence suggests that lysine-specific demethylase-1 (LSD1, Kdm1a) induces demethylation of histone H3 lysine 4 (H3K4) or H3K9 and thereby alters gene transcription. We previously demonstrated a human LSD1 phenotype associated with salt-sensitive hypertension. To test the hypothesis that LSD1 plays a role in the regulation of blood pressure (BP) via vascular mechanisms and gene transcription, we measured BP and examined vascular function and endothelial nitric oxide (NO) synthase (eNOS) expression in thoracic aorta of male wild-type (WT) and heterozygous LSD1 knockout mice (LSD1(+/-)) fed either a liberal salt (HS; 4% NaCl) or restricted salt diet (LS; 0.08% NaCl). BP was higher in LSD1(+/-) than WT mice on the HS diet but not different between LSD1(+/-) and WT mice on the LS diet. Further examination of the mechanisms of this salt-sensitive hypertension in LSD1(+/-) mice on the HS diet demonstrated that plasma renin activity and plasma levels and urinary excretion of aldosterone were less in LSD1(+/-) than WT, suggesting suppressed renin-angiotensin-aldosterone system. In contrast, phenylephrine (Phe)-induced aortic contraction was greater in LSD1(+/-) than WT mice on the HS diet. Treatment of aortic rings with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a blocker of guanylate cyclase) enhanced Phe contraction in LSD1(+/-) compared with WT mice on the HS diet. Acetylcholine (Ach)-induced relaxation was less in LSD1(+/-) than WT mice on the HS diet. Endothelium removal or pretreatment with N(ω)-nitro-L-arginine methyl ester (blocker of NOS) or ODQ abolished Ach-induced relaxation in aorta of WT but had minimal effect in LSD1(+/-). Vascular relaxation to sodium nitroprusside, an exogenous NO donor and guanylate cyclase activator, was decreased in LSD1(+/-) vs. WT mice on the HS diet. RT-PCR and Western blots revealed decreased eNOS mRNA expression and eNOS and guanylate cyclase protein in the heart and aorta of LSD1(+/-) compared with WT mice on HS diet. Thus, during the HS diet, LSD1 deficiency is associated with hypertension, enhanced vascular contraction, and reduced relaxation via NO-cGMP pathway. The data support a role for LSD1-mediated histone demethylation in the regulation of NOS/guanylate cyclase gene expression, vascular function, and BP during the HS diet.


Assuntos
Pressão Sanguínea , GMP Cíclico/metabolismo , Hipertensão/enzimologia , Músculo Liso Vascular/enzimologia , Óxido Nítrico/metabolismo , Oxirredutases N-Desmetilantes/deficiência , Cloreto de Sódio na Dieta , Vasoconstrição , Aldosterona/sangue , Aldosterona/urina , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Western Blotting , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Genótipo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Histona Desmetilases , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredutases N-Desmetilantes/genética , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Renina/sangue , Transdução de Sinais , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
5.
J Endocrinol ; 245(3): 439-450, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229698

RESUMO

Aldosterone modulates the activity of both epithelial (specifically renal) and non-epithelial cells. Binding to the mineralocorticoid receptor (MR), activates two pathways: the classical genomic and the rapidly activated non-genomic that is substantially modulated by the level of striatin. We hypothesized that disruption of MR's non-genomic pathway would alter aldosterone-induced cardiovascular/renal damage. To test this hypothesis, wild type (WT) and striatin heterozygous knockout (Strn+/-) littermate male mice were fed a liberal sodium (1.6% Na+) diet and randomized to either protocol one: 3 weeks of treatment with either vehicle or aldosterone plus/minus MR antagonists, eplerenone or esaxerenone or protocol two: 2 weeks of treatment with either vehicle or L-NAME/AngII plus/minus MR antagonists, spironolactone or esaxerenone. Compared to the WT mice, basally, the Strn+/- mice had greater (~26%) estimated renal glomeruli volume and reduced non-genomic second messenger signaling (pAkt/Akt ratio) in kidney tissue. In response to active treatment, the striatin-associated-cardiovascular/renal damage was limited to volume effects induced by aldosterone infusion: significantly increased blood pressure (BP) and albuminuria. In contrast, with aldosterone or L-NAME/AngII treatment, striatin deficiency did not modify aldosterone-mediated damage: in the heart and kidney, macrophage infiltration, and increases in aldosterone-induced biomarkers of injury. All changes were near-normalized following MR blockade with spironolactone or esaxerenone, except increased BP in the L-NAME/AngII model. In conclusion, the loss of striatin amplified aldosterone-induced damage suggesting that aldosterone's non-genomic pathway is protective but only related to effects likely mediated via epithelial, but not non-epithelial cells.


Assuntos
Aldosterona/farmacologia , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Proteínas de Ligação a Calmodulina/genética , Eplerenona/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Proteínas do Tecido Nervoso/genética , Pirróis/farmacologia , Espironolactona/farmacologia , Sulfonas/farmacologia
6.
Circulation ; 117(17): 2253-61, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18427128

RESUMO

BACKGROUND: In obesity, decreases in adiponectin and increases in proinflammatory adipokines are associated with heart disease. Because adipocytes express mineralocorticoid receptor (MR) and MR blockade reduces cardiovascular inflammation and injury, we tested the hypothesis that MR blockade reduces inflammation and expression of proinflammatory cytokines in adipose tissue and increases adiponectin expression in adipose tissue and hearts of obese mice. METHODS AND RESULTS: We determined the effect of MR blockade (eplerenone, 100 mg/kg per day for 16 weeks) on gene expression in retroperitoneal adipose and heart tissue from obese, diabetic db/db mice (n=8) compared with untreated obese, diabetic db/db mice (n=10) and lean, nondiabetic db/+ littermates (n=11). Expression of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, plasminogen activator inhibitor type 1, and macrophage protein CD68 increased, and expression of adiponectin and peroxisome proliferator-activated receptor-gamma decreased in retroperitoneal adipose tissue from obese versus lean mice. In addition, adiponectin expression in heart was reduced in obese versus lean mice. MR blockade prevented these obesity-related changes in gene expression. Furthermore, treatment of undifferentiated preadipocytes with aldosterone (10(-8) mol/L for 24 hours) increased mRNA levels of tumor necrosis factor-alpha and monocyte chemoattractant protein-1 and reduced mRNA and protein levels of peroxisome proliferator-activated receptor-gamma and adiponectin, supporting a direct aldosterone effect on gene expression. CONCLUSIONS: MR blockade reduced expression of proinflammatory and prothrombotic factors in adipose tissue and increased expression of adiponectin in heart and adipose tissue of obese, diabetic mice. These effects on adiponectin and adipokine gene expression may represent a novel mechanism for the cardioprotective effects of MR blockade.


Assuntos
Aldosterona/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides , Obesidade/tratamento farmacológico , Células 3T3-L1 , Adipocinas/genética , Adipocinas/imunologia , Adiponectina/genética , Adiponectina/imunologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Animais , Biomarcadores , Peso Corporal , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Homeostase/imunologia , Inflamação/complicações , Inflamação/imunologia , Leptina/genética , Leptina/imunologia , Masculino , Camundongos , Camundongos Mutantes , Miocárdio/imunologia , Obesidade/complicações , Obesidade/imunologia , PPAR gama/genética , PPAR gama/imunologia , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/metabolismo , Triglicerídeos/sangue
7.
J Endocrinol ; 240(2): 111-122, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400034

RESUMO

Human risk allele carriers of lysine-specific demethylase 1 (LSD1) and LSD1-deficient mice have salt-sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone's response to salt intake resulting in increased cardiovascular risk factors (blood pressure and microalbumin). Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote-knockout (LSD1+/-) and WT mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/- mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt-sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/- mice. These data suggest that LSD1 interacts with aldosterone's secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.


Assuntos
Aldosterona/metabolismo , Pressão Sanguínea/fisiologia , Histona Desmetilases/deficiência , Zona Glomerulosa/metabolismo , Fatores Etários , Albuminúria/etiologia , Albuminúria/genética , Albuminúria/metabolismo , Animais , Pressão Sanguínea/genética , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Feminino , Histona Desmetilases/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Risco , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos , Zona Glomerulosa/citologia
8.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212952

RESUMO

Compared with persons of European descent (ED), persons of African descent (AD) have lower aldosterone (ALDO) levels, with the assumption being that the increased cardiovascular disease (CVD) risk associated with AD is not related to ALDO. However, the appropriateness of the ALDO levels for the volume status in AD is unclear. We hypothesized that, even though ALDO levels are lower in AD, they are inappropriately increased, and therefore, ALDO could mediate the increased CVD in AD. To test this hypothesis, we analyzed data from HyperPATH - 1,788 individuals from the total cohort and 765 restricted to ED-to-AD in a 2:1 match and genotyped for the endothelin-1 gene (EDN1). Linear regression analyses with adjustments were performed. In the total and restricted cohorts, PRA, ALDO, and urinary potassium levels were significantly lower in AD. However, in the AD group, greater ALDO dysregulation was present as evidenced by higher ALDO/plasma renin activity (PRA) ratios (ARR) and sodium-modulated ALDO suppression-to-stimulation indices. Furthermore, EDN1 minor allele carriers had significantly greater ARRs than noncarriers but only in the AD group. ARR levels were modulated by a significant interaction between EDN1 and AD. Thus, EDN1 variants may identify particularly susceptible ADs who will be responsive to treatment targeting ALDO-dependent pathways (e.g., mineralocorticoid-receptor antagonists).


Assuntos
Aldosterona/metabolismo , População Negra/genética , Endotelina-1/genética , Adulto , Animais , Células Cultivadas , Estudos de Coortes , Endotelina-1/metabolismo , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Potássio/urina , Ratos Wistar , Renina/sangue , Cloreto de Sódio na Dieta/administração & dosagem , Adulto Jovem , Zona Glomerulosa/metabolismo
9.
Endocrinology ; 147(11): 5363-73, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16901964

RESUMO

To determine whether mineralocorticoid receptor (MR) activation plays a role in diabetic renal injury and whether this role differs in types 1 and 2 diabetes mellitus, we examined the effect of a MR antagonist on renal injury in rodent models of type 1 (streptozotocin-treated rat) and type 2 (db/db mouse) diabetes. We studied three groups of 8-wk-old, uninephrectomized Wistar rats for 4 wk: diabetic streptozotocin- (55 mg/kg) treated rats (n = 11), diabetic streptozotocin-treated rats receiving the MR antagonist eplerenone (n = 15), and nondiabetic rats (n = 9). In addition, we studied three groups of 8-wk-old mice for 16 wk: diabetic db/db mice (n = 10), diabetic db/db mice treated with eplerenone (n = 8), and nondiabetic, db/+ littermates (n = 11). Diabetic rats and mice developed albuminuria and histopathological evidence of renal injury, including glomerular hypertrophy, mesangial expansion, and tubulointerstitial injury as well as increased renal cortical levels of MR protein, MR mRNA, TGFbeta mRNA, and osteopontin mRNA. All of these changes were significantly reduced by treatment with eplerenone except for the elevated MR levels. The beneficial effects of eplerenone were not attributable to changes in blood pressure or glycemia. In summary, MR expression was increased in kidneys of diabetic rodents, and MR antagonists effectively reduced diabetic renal injury irrespective of the species or specific cause of the diabetes. Thus, these data suggest that MR activation is a critical factor in the early pathogenesis of renal disease in both type 1 and type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/prevenção & controle , Antagonistas de Receptores de Mineralocorticoides , Espironolactona/análogos & derivados , Albuminúria/prevenção & controle , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/etiologia , Eplerenona , Hipertrofia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/análise , Osteopontina/genética , RNA Mensageiro/análise , Ratos , Ratos Wistar , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/fisiologia , Espironolactona/farmacologia , Espironolactona/uso terapêutico , Estreptozocina , Sístole
10.
J Clin Endocrinol Metab ; 91(10): 3981-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16868049

RESUMO

CONTEXT: Aldosterone levels increase during the luteal phase of the menstrual cycle. Prior studies examining relationships between aldosterone and female sex hormones did not control for sodium balance, a major determinant of aldosterone production. OBJECTIVES: The objectives of this study were 1) to compare aldosterone levels between menstrual phases among cycling women in high- and low-sodium balance; and 2) to examine the relationships between aldosterone and female sex hormones in women and the effects of sex hormones on rat zona glomerulosa (ZG) cell aldosterone production in vitro. SUBJECTS/INTERVENTIONS: Normotensive, premenopausal women were studied in low- and/or high-sodium balance. Urinary aldosterone, basal serum aldosterone, plasma renin activity (PRA), plasma angiotensin II (AngII), and serum aldosterone after AngII infusion were measured. Isolated rat ZG cells were treated with progesterone, estradiol, or both, and aldosterone was measured. RESULTS: In high-sodium balance, urinary aldosterone, basal serum aldosterone, and serum aldosterone response to infused AngII were significantly greater (P < 0.05) in the luteal vs. follicular phase. PRA, AngII, and potassium did not differ. Progesterone directly correlated with urinary aldosterone, basal serum aldosterone, and serum aldosterone response to infused AngII. Estradiol did not significantly correlate with aldosterone. In low-sodium balance, no significant differences in aldosterone levels between phases were found. In vitro, progesterone increased ZG cell aldosterone production (P < 0.01), whereas estradiol had no effect. CONCLUSIONS: In women, urinary and serum aldosterone levels are significantly higher during the luteal phase in high- but not low-sodium balance, whereas PRA and AngII do not differ between phases. Progesterone may directly contribute to increased luteal phase aldosterone production, independent of the renin-angiotensin system.


Assuntos
Aldosterona/metabolismo , Ciclo Menstrual/metabolismo , Progesterona/sangue , Adulto , Angiotensina II/farmacologia , Estradiol/sangue , Feminino , Humanos , Renina/sangue , Sistema Renina-Angiotensina/fisiologia , Sódio/metabolismo
11.
Endocrinology ; 155(6): 2233-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654783

RESUMO

The cellular responses to steroids are mediated by 2 general mechanisms: genomic and rapid/nongenomic effects. Identification of the mechanisms underlying aldosterone (ALDO)'s rapid vs their genomic actions is difficult to study, and these mechanisms are not clearly understood. Recent data suggest that striatin is a mediator of nongenomic effects of estrogen. We explored the hypothesis that striatin is an intermediary of the rapid/nongenomic effects of ALDO and that striatin serves as a novel link between the actions of the mineralocorticoid and estrogen receptors. In human and mouse endothelial cells, ALDO promoted an increase in phosphorylated extracellular signal-regulated protein kinases 1/2 (pERK) that peaked at 15 minutes. In addition, we found that striatin is a critical intermediary in this process, because reducing striatin levels with small interfering RNA (siRNA) technology prevented the rise in pERK levels. In contrast, reducing striatin did not significantly affect 2 well-characterized genomic responses to ALDO. Down-regulation of striatin with siRNA produced similar effects on estrogen's actions, reducing nongenomic, but not some genomic, actions. ALDO, but not estrogen, increased striatin levels. When endothelial cells were pretreated with ALDO, the rapid/nongenomic response to estrogen on phosphorylated endothelial nitric oxide synthase (peNOS) was enhanced and accelerated significantly. Importantly, pretreatment with estrogen did not enhance ALDO's nongenomic response on pERK. In conclusion, our results indicate that striatin is a novel mediator for both ALDO's and estrogen's rapid and nongenomic mechanisms of action on pERK and phosphorylated eNOS, respectively, thereby suggesting a unique level of interactions between the mineralocorticoid receptor and the estrogen receptor in the cardiovascular system.


Assuntos
Aldosterona/farmacologia , Proteínas de Ligação a Calmodulina/metabolismo , Estrogênios/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Hormônios/farmacologia , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Am J Hypertens ; 25(2): 243-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22089104

RESUMO

BACKGROUND: Aldosterone (ALDO), a critical regulator of sodium homeostasis, mediates its effects via activation of the mineralocorticoid receptor (MR) through mechanisms that are not entirely clear. Striatin, a membrane associated protein, interacts with estrogen receptors in endothelial cells. METHODS: We studied the effects of MR activation in vitro and in vivo on striatin levels in vascular tissue. RESULTS: We observed that dietary sodium restriction was associated with increased striatin levels in mouse heart and aorta and that striatin and MR are present in the human endothelial cell line, (EA.hy926), and in mouse aortic endothelial cells (MAEC). Further, we show that MR co-precipitates with striatin in vascular tissue. Incubation of EA.hy926 cells with ALDO (10(-8) mol/l for 5-24 h) increases striatin protein and mRNA expression, an effect that was inhibited by canrenoic acid, an MR antagonist. Consistent with these observations, incubation of MAEC with ALDO increased striatin levels that were likewise blocked by canrenoic acid. To test the in vivo relevance of these findings, we studied two previously described mouse models of increased ALDO levels. Intraperitoneal ALDO administration augmented the abundance of striatin protein in mouse heart. We also observed that in a murine model of chronic ALDO-mediated cardiovascular damage following treatment with N(G)-nitro-L-arginine methyl ester plus angiotensin II an increased abundance of striatin protein in heart and kidney tissue. CONCLUSION: Our results provide evidence that increased striatin levels is a component of MR activation in the vasculature and suggest that regulation of striatin by ALDO may modulate estrogen's nongenomic effects.


Assuntos
Proteínas de Ligação a Calmodulina/biossíntese , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Receptores de Mineralocorticoides/metabolismo , Aldosterona/administração & dosagem , Aldosterona/fisiologia , Angiotensina II/metabolismo , Animais , Aorta/metabolismo , Ácido Canrenoico/farmacologia , Células Cultivadas , Dieta Hipossódica , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/farmacologia
13.
Endocrinology ; 151(3): 1236-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20097717

RESUMO

Caveolae are the major cellular membrane structure through which extracellular mediators transmit information to intracellular signaling pathways. In vascular tissue (but not ventricular myocardium), caveolin-1 (cav-1) is the main component of caveolae; cav-1 modulates enzymes and receptors, such as the endothelial nitric oxide synthase and the angiotensin II (AngII) type 1 receptor. Evidence suggests that AngII and aldosterone (ALDO) are important mediators of ventricular injury. We have described a model of biventricular damage in rodents that relies on treatment with N-omega-nitro-l-arginine methyl ester (L-NAME (nitric oxide synthase inhibitor)) and AngII. This damage initiated at the vascular level and was observed only in the presence of ALDO and an activated mineralocorticoid receptor (MR). We hypothesize that cav-1 modulates the adverse cardiac effects mediated by ALDO in this animal model. To test this hypothesis, we assessed the ventricular damage and measures of inflammation, in wild-type (WT) and cav-1 knockout (KO) mice randomized to either placebo or L-NAME/AngII treatment. Despite displaying cardiac hypertrophy at baseline and higher blood pressure responses to L-NAME/AngII, cav-1 KO mice displayed, as compared with WT, decreased treatment-induced biventricular damage as well as decreased transcript levels of the proinflammatory marker plasminogen activator inhibitor-1. Additionally, L-NAME/AngII induced an increase in cardiac MR levels in WT but not cav-1-ablated mice. Moreover and despite similar circulating ALDO levels in both genotypes, the myocardial damage (as determined histologically and by plasminogen activator inhibitor-1 mRNA levels) was less sensitive to ALDO levels in cav-1 KO vs. WT mice, consistent with decreased MR signaling in the cav-1 KO. Thus, we conclude that the L-NAME/AngII-induced biventricular damage is mediated by a mechanism partially dependent on cav-1 and signaling via MR/ALDO.


Assuntos
Aldosterona/sangue , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Caveolina 1/deficiência , Óxido Nítrico Sintase Tipo III/metabolismo , Sequência de Aminoácidos , Animais , Pressão Sanguínea , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Miocárdio/patologia , NG-Nitroarginina Metil Éster , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais
14.
Am J Physiol Heart Circ Physiol ; 294(3): H1258-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18178722

RESUMO

Changes in dietary sodium intake are associated with changes in vascular volume and reactivity that may be mediated, in part, by alterations in endothelial nitric oxide synthase (eNOS) activity. Caveolin-1 (Cav-1), a transmembrane anchoring protein in the plasma membrane caveolae, binds eNOS and limits its translocation and activation. To test the hypothesis that endothelial Cav-1 participates in the dietary sodium-mediated effects on vascular function, we assessed vascular responses and nitric oxide (NO)-mediated mechanisms of vascular relaxation in Cav-1 knockout mice (Cav-1-/-) and wild-type control mice (WT; Cav-1+/+) placed on a high-salt (HS; 4% NaCl) or low-salt (LS; 0.08% NaCl) diet for 16 days. After the systolic blood pressure was measured, the thoracic aorta was isolated for measurement of vascular reactivity and NO production, and the heart was used for measurement of eNOS expression and/or activity. The blood pressure was elevated in HS mice treated with NG-nitro-l-arginine methyl ester and more so in Cav-1-/- than WT mice and was significantly reduced during the LS diet. Phenylephrine caused vascular contraction that was significantly reduced in Cav-1-/- (maximum 0.25 +/- 0.06 g/mg) compared with WT (0.75 +/- 0.22 g/mg) on the HS diet, and the differences were eliminated with the LS diet. Also, vascular contraction in response to membrane depolarization by high KCl (96 mM) was reduced in Cav-1-/- (0.27 +/- 0.05 g/mg) compared with WT mice (0.53 +/- 0.12 g/mg) on the HS diet, suggesting that the reduced vascular contraction is not limited to a particular receptor. Acetylcholine (10(-5) M) caused aortic relaxation in WT mice on HS (23.6 +/- 3.5%) and LS (23.7 +/- 5.5%) that was enhanced in Cav-1-/- HS (72.6 +/- 6.1%) and more so in Cav-1-/- LS mice (93.6 +/- 3.5%). RT-PCR analysis indicated increased eNOS mRNA expression in the aorta and heart, and Western blots indicated increased total eNOS and phosphorylated eNOS in the heart of Cav-1-/- compared with WT mice on the HS diet, and the genotypic differences were less apparent during the LS diet. Thus Cav-1 deficiency during the HS diet is associated with decreased vasoconstriction, increased vascular relaxation, and increased eNOS expression and activity, and these effects are altered during the LS diet. The data support the hypothesis that endothelial Cav-1, likely through an effect on eNOS activity, plays a prominent role in the regulation of vascular function during substantial changes in dietary sodium intake.


Assuntos
Caveolina 1/deficiência , Caveolina 1/genética , Músculo Liso Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Sódio na Dieta/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Peso Corporal/efeitos dos fármacos , Dieta , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/fisiologia , Masculino , Camundongos , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA