RESUMO
OBJECTIVE: Medical staff, especially nurses, suffered great anxiety and stress from the COVID-19 pandemic, which negatively affected their sleep quality. In this study, we aimed to analyze the sleep quality of nursing staff after terminating the Zero-COVID-19 policy in China. METHODS: 506 participants were involved in our study. The Pittsburgh Sleep Quality Index (PSQI) was used to evaluate the sleep status of the participants. Binary regression was performed to evaluate the impact factors related to sleep difficulty. RESULTS: The majority of participants (96.44%) suffered from sleep disturbances. There were significant differences in age, education level and front-line activity between participants with good sleep quality and sleep difficulty. Younger age (16-25 years old) was independently associated with less sleep difficulty, while front-line activity was independently associated with severe sleep difficulty. CONCLUSION: Sleep disorder was very common among nurses after ending the Zero-COVID-19 policy in China. More front-line nurses suffered severe sleep difficulty in particular, which should be worthy of attention.
RESUMO
Duck Tembusu virus (DTMUV) is a neurotropic virus in the genus Flavivirus that causes massive economic losses to the poultry industry in China and neighbouring countries. Autophagy is pivotal in cellular responses to pathogens and in viral pathogenesis. However, little is known about the roles of autophagy in DTMUV replication and viral pathogenesis, especially in neuropathogenesis. In this study, mouse neuroblastoma cells (Neuro-2a) were used to establish a cell model of DTMUV infection. Our experiments indicated that DTMUV infection induced incomplete autophagy in Neuro-2a cells. Then, we used different autophagy regulators to alter the autophagy induced by DTMUV and found that incomplete autophagy promoted DTMUV replication. Furthermore, we showed that DTMUV infection activated the ERK and AMPK pathways, resulting in decreased phosphorylation of the autophagy repressor mTOR, subsequently leading to autophagic induction. In addition, we utilized ICR mice in an animal model of DTMUV infection to evaluate the autophagic responses in brain tissues and investigate the effects of autophagy on viral replication and tissue lesions. Our results confirmed that DTMUV induced incomplete autophagy in mouse brain tissues and that autophagy inducer treatment promoted DTMUV replication and aggravated DTMUV-induced lesions, whereas autophagy inhibitor treatment had the opposite effects. In summary, DTMUV infection induced incomplete autophagy through the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in mouse neuronal cells, and DTMUV-induced incomplete autophagy contributed to the neuropathogenesis of DTMUV.
Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Camundongos , Infecções por Flavivirus/veterinária , Proteínas Quinases Ativadas por AMP , Camundongos Endogâmicos ICR , Flavivirus/fisiologia , Replicação Viral , Patos , Serina-Treonina Quinases TOR , AutofagiaRESUMO
OBJECTIVE: We aimed to evaluate door-to-puncture time (DPT) and door-to-recanalization time (DRT) without directing healthcare by neuro-interventionalist support in the emergency department (ED) by workflow optimization and improving patients' outcomes. METHODS: Records of 98 consecutive ischemic stroke patients who had undergone endovascular therapy (EVT) between 2018 to 2021 were retrospectively reviewed in a single-center study. Patients were divided into three groups: pre-intervention (2018-2019), interim-intervention (2020), and post-intervention (January 1st 2021 to August 16th, 2021). We compared door-to-puncture time, door-to-recanalization time (DRT), puncture-to-recanalization time (PRT), last known normal time to-puncture time (LKNPT), and patient outcomes (measured by 3 months modified Rankin Scale) between three groups using descriptive statistics. RESULTS: Our findings indicate that process optimization measures could shorten DPT, DRT, PRT, and LKNPT. Median LKNPT was shortened by 70 min from 325 to 255 min(P < 0.05), and DPT was shortened by 119 min from 237 to 118 min. DRT shortened by 132 min from 338 to 206 min, and PRT shortened by 33 min from 92 to 59 min from the pre-intervention to post-intervention groups (all P < 0.05). Only 21.4% of patients had a favorable outcome in the pre-intervention group as compared to 55.6% in the interventional group (P= 0.026). CONCLUSION: This study demonstrated that multidisciplinary cooperation was associated with shortened DPT, DRT, PRT, and LKNPT despite challenges posed to the healthcare system such as the COVID-19 pandemic. These practice paradigms may be transported to other stroke centers and healthcare providers to improve endovascular time metrics and patient outcomes.
Assuntos
COVID-19 , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/cirurgia , Pandemias , Punções , Estudos Retrospectivos , Acidente Vascular Cerebral/terapia , Trombectomia , Tempo para o Tratamento , Resultado do Tratamento , Fluxo de TrabalhoRESUMO
OBJECTIVES: This study aims to evaluate shortening door-to-needle time of intravenous recombinant tissue plasminogen activator of acute ischemic stroke patients by multidisciplinary collaboration and workflow optimization based on our hospital resources. MATERIALS AND METHODS: We included patients undergoing thrombolysis with intravenous recombinant tissue plasminogen activator from January 1, 2018, to September 30, 2020. Patients were divided into pre- (January 1, 2018, to December 31, 2019) and post-intervention groups (January 1, 2020, to September 31, 2020). We conducted multi-department collaboration and process optimization by implementing 16 different measures in prehospital, in-hospital, and post-acute feedback stages for acute ischemic stroke patients treated with intravenous thrombolysis. A comparison of outcomes between both groups was analyzed. RESULTS: Two hundred and sixty-three patients received intravenous recombinant tissue plasminogen activator in our hospital during the study period, with 128 and 135 patients receiving treatment in the pre-intervention and post-intervention groups, respectively. The median (interquartile range) door-to-needle time decreased significantly from 57.0 (45.3-77.8) min to 37.0 (29.0-49.0) min. Door-to-needle time was shortened to 32 min in the post-intervention period in the 3rd quarter of 2020. The door-to-needle times at the metrics of ≤ 30 min, ≤ 45 min, ≤ 60 min improved considerably, and the DNT> 60 min metric exhibited a significant reduction. CONCLUSIONS: A multidisciplinary collaboration and continuous process optimization can result in overall shortened door-to-needle despite the challenges incurred by the COVID-19 pandemic.
Assuntos
Isquemia Encefálica/tratamento farmacológico , COVID-19/complicações , Comportamento Cooperativo , AVC Isquêmico/tratamento farmacológico , Equipe de Assistência ao Paciente , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/administração & dosagem , Administração Intravenosa , Intervenção Médica Precoce , Serviços Médicos de Emergência , Feminino , Fibrinolíticos/administração & dosagem , Fibrinolíticos/uso terapêutico , Humanos , Masculino , Pandemias , SARS-CoV-2 , Gerenciamento do Tempo , Tempo para o Tratamento , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento , Fluxo de TrabalhoRESUMO
The monopolar spindle 1 ((hMps1/TTK) is a serine/threonine kinase that plays an important role in spindle assembly checkpoint signaling. To explore the possible relationship between TTK inhibition and radiosensitivity, we examined whether TTK inhibition influences cellular susceptibility of radiation. And we further revealed its mechanisms. We found that the expression of TTK was obviously higher in liver cancer tissues compared to the normal liver tissues. Kaplan-Meier Plotter demonstrated that patients with low TTK expression levels had a longer overall survival than patients with high TTK expression levels. TTK inhibitor AZ3146 could simulated liver cancer cells to accumulate in the G2/M phase, which ultimately enhances DNA damage with more γ-H2AX foci and more apoptosis and necrosis induced by radiation, which prompted that TTK inhibition sensitized liver cancer cells to radiation. In addition, TTK inhibition altered cell-cycle progression and exacerbated centrosome abnormalities, resulting in enhanced mitotic catastrophe (MC) induced by radiation in a p21-mediated manner. In this study, we present evidences that the TTK inhibitor promotes the radiosensitivity of liver cancer cells through regulating cell cycle in p21-mediated manner in vitro, indicating that TTK inhibitor may be an attractive radiosensitizer for the patients with liver cancer.
Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Centrossomo/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos da radiação , Necrose/tratamento farmacológico , Necrose/radioterapia , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Análise de SobrevidaRESUMO
Objective: To investigate the prognostic factors of patients with persistent/recurrent differentiated thyroid carcinoma (DTC) especially with external invasive persistent recurrent DTC after comprehensive treatment. Methods: The clinical data of 525 patients with persistent/recurrent DTC who underwent surgical treatment from August 2011 to June 2021 in the Department of Head and Neck Surgery of Jiangsu Cancer Hospital were retrospectively analyzed. The prognostic factors affecting overall survival (OS) and relapse-free survival (RFS) of persistent/recurrent DTC, especially external invasive persistent/recurrent DTC were analyzed. Results: Among 525 patients, 318 patients underwent thyroidectomy, 359 patients underwent central lymph node dissection, and 409 patients underwent lateral cervical lymph node dissection. Among 493 followed-up patients, 5-year OS and RFS were 95.10% and 89.60%, 8-year OS and RFS were 91.80% and 81.30%. Cox regression analysis showed that in patients with persistent/recurrent DTC after comprehensive treatment, age ≥55â years at reoperation after recurrence, male gender and distant metastasis were independent risk factors of OS (all P<0.05); while the simultaneous invasion of thyroid and lymph nodes, multiple organ invasion and the number of previous operations ≥2 were independent risk factors of RFS (all P<0.05). In patients with external invasive persistent/recurrent DTC after comprehensive treatment, age ≥55â years at reoperation after recurrence and male gender were independent risk factors of OS (both P<0.05); while multiple organ invasion and the number of previous operations ≥2 were independent risk factors of RFS (both P<0.05). Conclusions: Male patients aged 55â years old and above, with distant metastasis have a higher risk of poorer prognosis in persistent/recurrent DTC; while patients with simultaneous external invasion of thyroid and lymph nodes, multiple organ invasion and the number of previous operations ≥2 are more likely to relapse. For external invasive persistent/recurrent DTC, male patients aged 55â years old and above have a higher risk of poorer prognosis; while patients with multiple organ invasion and the number of previous operations ≥2 are more likely to have recurrence.
RESUMO
Background: Information is limited regarding the effectiveness of the inactivated vaccine for COVID-19 approved in China in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) when administered in real-world conditions. Methods: We retrospectively surveyed 1352 patients with a positive SARS-CoV-2 nucleic acid test treated at a major tertiary medical center in Foshan city (Guangdong, China) between November 2022 and February 2023. The exposure group was patients who had previously received the COVID-19 vaccine, which included patients who had received different doses of the vaccine and different vaccine types. The primary outcome of this study was the effectiveness of the vaccine in preventing severe disease and death among SARS-CoV-2-infected patients. Results: We found a mortality rate of 12.1 % associated with COVID-19. The results showed that an increase in the number of vaccine doses was associated with a reduction in in-hospital mortality. When compared to unvaccinated patients, vaccinated patients had an 8.5 % lower mortality rate. There was also a statistically significant reduction in the risk of death among vaccinated patients compared to unvaccinated patients (OR = 0.521 [95 % CI, 0.366 to 0.741]). Patients who had received the vaccine had a 22.8 % reduction in the risk of severe disease. In addition, the use of antiviral drugs decreased progressively with increasing vaccine doses (P < 0.05). Of these, anticoagulation, Paxlovid, and mechanical ventilation were used least frequently in the one-dose group. Conclusions: The vaccines approved in China mitigated the incidence of severe COVID-19 and reduced mortality. These findings suggest that COVID-19 vaccination can help to control the pandemic.
RESUMO
BACKGROUND: It has been proposed that anti-angiogenesis therapy could induce tumor "vascular normalization" and further enhance the efficacy of chemotherapy, radiotherapy, target therapy, and immunotherapy for nearly twenty years. However, the detailed molecular mechanism of this phenomenon is still obscure. METHOD: Overexpression and knockout of CCL28 in human lung adenocarcinoma cell line A549 and murine lung adenocarcinoma cell line LLC, respectively, were utilized to establish mouse models. Single-cell sequencing was performed to analyze the proportion of different cell clusters and metabolic changes in the tumor microenvironment (TME). Immunofluorescence and multiplex immunohistochemistry were conducted in murine tumor tissues and clinical biopsy samples to assess the percentage of pericytes coverage. Primary pericytes were isolated from lung adenocarcinoma tumor tissues using magnetic-activated cell sorting (MACS). These pericytes were then treated with recombinant human CCL28 protein, followed by transwell migration assays and RNA sequencing analysis. Changes in the secretome and metabolome were examined, and verification of retinoic acid metabolism alterations in pericytes was conducted using quantitative real-time PCR, western blotting, and LC-MS technology. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was employed to validate the transcriptional regulatory ability and affinity of RXRα to specific sites at the ANGPT1 promoter. RESULTS: Our study showed that after undergoing anti-angiogenesis treatment, the tumor exhibited a state of ischemia and hypoxia, leading to an upregulation in the expression of CCL28 in hypoxic lung adenocarcinoma cells by the hypoxia-sensitive transcription factor CEBPB. Increased CCL28 could promote tumor vascular normalization through recruiting and metabolic reprogramming pericytes in the tumor microenvironment. Mechanistically, CCL28 modified the retinoic acid (RA) metabolism and increased ANGPT1 expression via RXRα in pericytes, thereby enhancing the stability of endothelial cells. CONCLUSION: We reported the details of the molecular mechanisms of "vascular normalization" after anti-angiogenesis therapy for the first time. Our work might provide a prospective molecular marker for guiding the clinical arrangement of combination therapy between anti-angiogenesis treatment and other therapies.
Assuntos
Adenocarcinoma de Pulmão , Angiopoietina-1 , Quimiocinas CC , Neoplasias Pulmonares , Pericitos , Pericitos/metabolismo , Camundongos , Humanos , Animais , Angiopoietina-1/metabolismo , Angiopoietina-1/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Microambiente Tumoral , Neovascularização Patológica/metabolismo , Linhagem Celular TumoralRESUMO
Annexin A2 (ANXA2) is a widely reported oncogene. However, the mechanism of ANXA2 in esophageal cancer is not fully understood. In this study, we provided evidence that ANXA2 promotes the progression of esophageal squamous cell carcinoma (ESCC) through the downstream target threonine tyrosine kinase (TTK). These results are consistent with the up-regulation of ANXA2 and TTK in ESCC. In vitro experiments by knockdown and overexpression of ANXA2 revealed that ANXA2 promotes the progression of ESCC by enhancing cancer cell proliferation, migration, and invasion. Subsequently, animal models also confirmed the role of ANXA2 in promoting the proliferation and metastasis of ESCC. Mechanistically, the ANXA2/TTK complex activates the Akt/mTOR signaling pathway and accelerates epithelial-mesenchymal transition (EMT), thereby promoting the invasion and metastasis of ESCC. Furthermore, we identified that TTK overexpression can reverse the inhibition of ESCC invasion after ANXA2 knockdown. Overall, these data indicate that the combination of ANXA2 and TTK regulates the activation of the Akt/mTOR pathway and accelerates the progression of ESCC. Therefore, the ANXA2/TTK/Akt/mTOR axis is a potential therapeutic target for ESCC.
Assuntos
Anexina A2 , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Anexina A2/metabolismo , Anexina A2/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Camundongos , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Movimento Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , FemininoRESUMO
Mycoplasma synoviae infection has caused serious economic losses to the poultry industry worldwide. The molecular mechanism by which M. synoviae colonizes the synovium and induces synovitis is unclear. In this study, desthiobiotin pull-down and liquid chromatography-tandem mass spectrometry analyses were used to screen M. synoviae membrane proteins that bind the membrane proteins of synovial sheath cells (SSCs). Among the 128 screened proteins, elongation factor G (EF-G) of M. synoviae was identified as a surface-located protein using colony blotting and dual fluorescence analyses. The immunogenicity of EF-G was confirmed by the preparation of a rabbit polyclonal antibody. EF-G was identified as a cytoadhesin that directly binds to SSCs using indirect immunofluorescence assay and ELISA plate binding assay. In addition, antibody adhesion inhibition and protein adhesion inhibition demonstrated that EF-G could significantly promote the adhesion of M. synoviae to SSCs. Co-IP, GST pull-down, bacterial two-hybridization, and ELISA plate binding assays were performed to demonstrate the binding of EF-G and vimentin in vivo and in vitro. Antibody adhesion inhibition, protein adhesion inhibition, and siRNA interference adhesion inhibition assays demonstrated that vimentin significantly affected M. synoviae adhesion to SSCs. These studies indicate that two interacting proteins, EF-G, a novel cytoadhesin, and vimentin, an important cell surface receptor, play important roles in the adhesion of M. synoviae to SSCs, laying a foundation for subsequent studies on the mechanism of M. synoviae-induced synovitis and providing meaningful targets for screening target drugs against M. synoviae infection.
RESUMO
The relationship between total lymphocyte counts (TLCs) and survival is not well documented in rectal cancer. This study aimed to investigate the association between TLCs and disease-free survival (DFS) and identify factors associated with lymphopenia in locally advanced rectal cancer patients receiving chemoradiotherapy. Thirty-six patients with locally advanced rectal cancer were retrospectively analyzed. TLCs were evaluated before surgery (pre-S), before radiotherapy (pre-RT), and during concurrent chemoradiotherapy (CCRT). The relationship between TLCs and DFS was analyzed by univariate and multivariate analysis. Potential clinical factors associated with lymphopenia were also evaluated. Median TLC declined significantly during radiotherapy. Severe lymphopenia during CCRT was significantly associated with poorer DFS on Kaplan-Meier analysis (p = 0.01), univariate regression analysis (p = 0.036), and multivariate regression analysis (p = 0.038). Pre-S TLCs (p = 0.009) and pre-RT TLCs (p = 0.042) were significantly associated with severe lymphopenia on univariate regression analysis; however, only pre-S TLCs (p = 0.026) were significantly associated with severe lymphopenia on multivariate regression analysis. Severe lymphopenia was a predictor of poorer DFS in patients with locally advanced rectal cancer receiving adjuvant chemoradiotherapy. Pre-S TLCs were predictors of severe lymphopenia. Further study is warranted to reduce the rate of severe lymphopenia.
Assuntos
Linfopenia , Segunda Neoplasia Primária , Neoplasias Retais , Humanos , Estudos Retrospectivos , Quimiorradioterapia Adjuvante/efeitos adversos , Prognóstico , Linfopenia/etiologia , Neoplasias Retais/terapiaRESUMO
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Assuntos
MicroRNAs , Neoplasias , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Paclitaxel/farmacologia , Divisão Celular , Estatmina/genética , Neoplasias/tratamento farmacológicoRESUMO
Cyclin-dependent kinase 16 (CDK16) is an orphan "cyclin-dependent kinase" (CDK) involved in the cell cycle, vesicle trafficking, spindle orientation, skeletal myogenesis, neurite outgrowth, secretory cargo transport, spermatogenesis, glucose transportation, cell apoptosis, cell growth and proliferation, metastasis, and autophagy. Human CDK16 is located on chromosome Xp11.3 and is related to X-linked congenital diseases. CDK16 is commonly expressed in mammalian tissues and may act as an oncoprotein. It is a PCTAIRE kinase in which Cyclin Y or its homologue, Cyclin Y-like 1, regulates activity by binding to the N- and C- terminal regions of CDK16. CDK16 plays a vital role in various cancers, including lung cancer, prostate cancer, breast cancer, malignant melanoma, and hepatocellular carcinoma. CDK16 is a promising biomarker for cancer diagnosis and prognosis. In this review, we summarized and discussed the roles and mechanisms of CDK16 in human cancers.
Assuntos
Neoplasias Pulmonares , Neoplasias Cutâneas , Animais , Humanos , Masculino , Ciclo Celular , Divisão Celular , Ciclinas/metabolismoRESUMO
Thyroid cancer is the endocrine tumor with the highest incidence at present. It originates from the thyroid follicular epithelium or follicular paraepithelial cells. There is an increasing incidence of thyroid cancer all over the world. We found that SRPX2 expression level was higher in papillary thyroid tumors than in normal thyroid tissues, and SRPX2 expression was closely related to tumor grade and clinical prognosis. Previous reports showed that SRPX2 could function by activating PI3K/AKT signaling pathway. In addition, in vitro experiments showed that SRPX2 promoted the proliferation and migration of papillary thyroid cancer (PTC). In conclusion, SRPX2 could promote the malignant development of PTC. This may be a potential treatment target for PTC.
Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologiaRESUMO
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
RESUMO
Since 2010, the Tembusu virus (TMUV) has been highly prevalent in China, causing significant economic losses to the poultry industry. In 2022, a suspected outbreak of TMUV occurred at a goose farm located in Anhui Province. A strain of TMUV, TMUV HQ-22, was isolated from the infected geese. Phylogenetic analysis using the E gene of the HQ-22 strain demonstrated its affiliation with cluster 3, a less commonly reported cluster in comparison to the main circulating cluster, cluster 2. Through a comparison of the envelope (E) protein of HQ-22 with other typical TMUV strains, a mutation at the 157th amino acid position was identified, wherein valine (V) in cluster 3 changed to alanine (A), a characteristic that is unique to cluster 2. These findings highlight the diversity and complexity of the TMUV strains circulating in China. In our experimental analysis, an injection of TMUV HQ-22 into the muscles of 3-day-old goslings resulted in severe neurological symptoms and a mortality rate of 60%. Similarly, the intracranial or intranasal infection of 3-week-old ICR mice with TMUV HQ-22 led to severe neurological symptoms and respective mortality rates of 100% or 10%. In summary, our study isolated a TMUV strain, TMUV HQ-22, from geese that belongs to cluster 3 and exhibits significant pathogenicity in both goslings and ICR mice. These results emphasize the genetic diversity of the TMUV circulating in China and expand the host range beyond mosquitoes to include ducks, chickens, geese, and even mice. It is crucial to not underestimate the risk of TMUV infection in mammals, warranting our utmost attention.
Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Camundongos , Gansos , Filogenia , Virulência , Camundongos Endogâmicos ICR , Galinhas , Flavivirus/fisiologia , Patos , MamíferosRESUMO
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial-mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
RESUMO
Long non-coding RNA LINC00152 (cytoskeleton regulator, or LINC00152) is an 828-bp lncRNA located on chromosome 2p11.2. LINC00152 was originally discovered during research on hepatocarcinogenesis and has since been regarded as a crucial oncogene that regulates gene expression in many cancer types. LINC00152 is aberrantly expressed in various cancers, including gastric, breast, ovarian, colorectal, hepatocellular, and lung cancer, and glioma. Several studies have indicated that LINC00152 is correlated with cell proliferation, apoptosis, migration, invasion, cell cycle, epithelial-mesenchymal transition (EMT), chemotherapy and radiotherapy resistance, and tumor growth and metastasis. High LINC00152 expression in most tumors is significantly associated with poor patient prognosis. Mechanistic analysis has demonstrated that LINC00152 can serve as a competing endogenous RNA (ceRNA) by sponging miRNA, regulating the abundance of the protein encoded by a particular gene, or modulating gene expression at the epigenetic level. LINC00152 can serve as a diagnostic or prognostic biomarker, as well as a therapeutic target for most cancer types. In the present review, we discuss the roles and mechanisms of LINC00152 in human cancer, focusing on its functions in chemotherapy and radiotherapy resistance.
RESUMO
Recent work has shown that deep convolutional neural network is capable of solving inverse problems in computational imaging, and recovering the stress field of the loaded object from the photoelastic fringe pattern can also be regarded as an inverse problem solving process. However, the formation of the fringe pattern is affected by the geometry of the specimen and experimental configuration. When the loaded object produces complex fringe distribution, the traditional stress analysis methods still face difficulty in unwrapping. In this study, a deep convolutional neural network based on the encoder-decoder structure is proposed, which can accurately decode stress distribution information from complex photoelastic fringe images generated under different experimental configurations. The proposed method is validated on a synthetic dataset, and the quality of stress distribution images generated by the network model is evaluated using mean squared error (MSE), structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and other evaluation indexes. The results show that the proposed stress recovery network can achieve an average performance of more than 0.99 on the SSIM.