Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Immunology ; 171(2): 170-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735978

RESUMO

NLR family pyrin domain containing 2 (NLRP2) is a novel member of the Nod-like receptor (NLR) family. However, our understanding of NLRP2 has long been ambiguous. NLRP2 may have a role in the innate immune response, but its 'specific' functions remain controversial. Although NLRP2 can initiate inflammasome and promote inflammation, it can also downregulate inflammatory signals. Additionally, NLRP2 has been reported to function in the reproductive system and shows high expression in the placenta. However, the exact role of NLRP2 in the reproductive system is unclear. Here, we highlight the most current progress on NLRP2 in inflammasome activation, effector function and regulation of nuclear factor-κB. And we discuss functions of NLRP2 in inflammatory diseases, reproductive disorders and the potential implication of NLRP2 in human diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
Small ; 20(13): e2307294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963858

RESUMO

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.

3.
Small ; 20(28): e2311055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295001

RESUMO

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

4.
Small ; 20(31): e2400141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431944

RESUMO

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.

5.
Small ; 20(28): e2311431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366284

RESUMO

Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.

6.
Angew Chem Int Ed Engl ; 63(1): e202316522, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37994225

RESUMO

Seawater electrolysis is an attractive way of making H2 in coastal areas, and NiFe-based materials are among the top options for alkaline seawater oxidation (ASO). However, ample Cl- in seawater can severely corrode catalytic sites and lead to limited lifespans. Herein, we report that in situ carbon oxyanion self-transformation (COST) from oxalate to carbonate on a monolithic NiFe oxalate micropillar electrode allows safeguard of high-valence metal reaction sites in ASO. In situ/ex situ studies show that spontaneous, timely, and appropriate COST safeguards active sites against Cl- attack during ASO even at an ampere-level current density (j). Our NiFe catalyst shows efficient and stable ASO performance, which requires an overpotential as low as 349 mV to attain a j of 1 A cm-2 . Moreover, the NiFe catalyst with protective surface CO3 2- exhibits a slight activity degradation after 600 h of electrolysis under 1 A cm-2 in alkaline seawater. This work reports effective catalyst surface design concepts at the level of oxyanion self-transformation, acting as a momentous step toward defending active sites in seawater-to-H2 conversion systems.

7.
Mol Pharm ; 19(9): 3187-3198, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35939328

RESUMO

As the most common subtype in ovarian malignancies, high-grade serous ovarian cancer (HGSOC) made less therapeutic progress in past decades due to the lack of effective drug-able targets. Herein, an effective linoleic acid (LA) and glucosamine (GlcN) hybrid (LA-GlcN) was synthesized for the treatment of HGSOC. The GlcN was introduced to recognize the glucose transporter 1 (GLUT 1) overexpressed in tumor cells to enhance the uptake of LA-GlcN, and the unsaturated LA was employed to trigger ferroptosis by iron-dependent lipid peroxidation. Since the iron content of HGSOC was ∼5 and 2 times, respectively, higher than that of the normal ovarian cells and low-grade serous ovarian cancer cells, these excess irons make them a good target to enhance the ferroptosis of LA-GlcN. The in vitro study demonstrated that LA-GlcN could selectively kill HGSOC cells without affecting normal cells; the in vivo study revealed that LA-GlcN at the dose of 50 mg kg-1 achieved a comparable tumor inhibition as doxorubicin hydrochloride (4 mg kg-1) while the overall survival of mice was extended largely due to the low toxicity, and when the dose was increased to 100 mg kg-1, the therapeutic outcomes could be improved further. This dietary hybrid which targets the excess endogenous iron to activate ferroptosis represents a promising drug for HGSOC treatment.


Assuntos
Cistadenocarcinoma Seroso , Ferroptose , Neoplasias Ovarianas , Animais , Feminino , Glucosamina , Humanos , Ferro , Ácido Linoleico/uso terapêutico , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
8.
Langmuir ; 36(12): 3193-3200, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32148045

RESUMO

Organic fluorescent nanoparticles (FNPs) have become increasingly prevalent in a variety of applications but the creation of organic FNPs using a simple procedure and that possess diverse morphology, multicolor luminescence, and high brightness has been challenging. Herein, a facile strategy to prepare this class of organic FNPs is established by way of preformed organic nanoparticles themselves. It was found that as long as the nanoparticles contained aromatic/heterocyclic rings in their base unit and regardless of morphologies (e.g., small-molecule micelles, polymeric micelles, reverse micelles, solid microspheres, and vesicles), simple UV irradiation can result in the particles exhibiting excitation-wavelength-dependent photoluminescence with considerable quantum yields (∼8.3-16.7% for tested particles). Upon initial investigation of the mechanism, the photoluminescence behavior was attributed to a polycyclic aromatic hydrocarbon (PAH) process. Furthermore, the application of the synthesized organic FNPs in cancer cell imaging is demonstrated as just one of the many potential applications. The straightforward method to supply preformed organic nanoparticles with photoluminescence would be attractive for scientists in both academia and industry.

9.
Langmuir ; 35(17): 5871-5877, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30955338

RESUMO

Reverse micelles (RMs) with confined water pools have been applied in many fields. However, the water insolubility of RMs seriously limits the scope of their application, especially those needed to operate in aqueous environments. Here, we report the first successful transfer of RMs from the organic phase to water phase without disturbing their confined water pools and hydrophobic alkyl region. This transfer was achieved by virtue of a mild host-guest interaction between the hydrophobic tails of interfacial cross-linked reverse micelles (ICRMs) and the hydrophobic cavity of (2-hydroxypropyl)-ß-cyclodextrin (HP-ß-CD). Benefitting from the maintained confined water pools and the hydrophobic scaffold, the obtained water-soluble ICRMs served as multifunctional nanoplatforms for enzyme-mimicking catalysis and image-guided cancer therapy, which were impossible for normal RMs lacking water solubility or confined pool-buried water-soluble nanoparticles without a hydrophobic alkyl chain. This mild transfer approach thus surmounts the application obstacle of RMs and opens up new avenues for their application in aqueous environments.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Micelas , 2-Hidroxipropil-beta-Ciclodextrina/química , Células A549 , Benzoína/química , Catálise , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Fluoruracila/análogos & derivados , Fluoruracila/farmacologia , Ouro/química , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Oxirredução , Rodaminas/química , Água/química
10.
BMC Infect Dis ; 19(1): 965, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718574

RESUMO

BACKGROUND: The co-occurrence of human immunodeficiency virus (HIV) infection and malaria in humans in endemic areas raises the question of whether one of these infections affects the course of the other. Although epidemiological studies have shown the impact of HIV infection on malaria, the mechanism(s) are not yet fully understood. Using a Chinese rhesus macaque coinfection model with simian immunodeficiency virus (SIV) and Plasmodium cynomolgi (Pc) malaria, we investigated the effect of concurrent SIV infection on the course of malaria and the underlying immunological mechanism(s). METHODS: We randomly assigned ten Chinese rhesus monkeys to two groups based on body weight and age. The SIV-Pc coinfection animals (S + P group) were infected intravenously with SIVmac251 eight weeks prior to malaria infection, and the control animals (P group) were infected intravenously with only Pc-infected red blood cells. After malaria was cured with chloroquine phosphate, we also initiated a secondary malaria infection that lasted 4 weeks. We monitored body weight, body temperature and parasitemia, measured SIV viral loads, hemoglobin and neopterin, and tracked the CD4+, CD8+, and CD4+ memory subpopulations, Ki67 and apoptosis by flow cytometry. Then, we compared these parameters between the two groups. RESULTS: The animals infected with SIV prior to Pc infection exhibited more severe malaria symptoms characterized by longer episodes, higher parasitemia, more severe anemia, greater body weight loss and higher body temperature than the animals infected with Pc alone. Concurrent SIV infection also impaired immune protection against the secondary Pc challenge infection. The coinfected animals showed a reduced B cell response to Pc malaria and produced lower levels of Pc-specific antibodies. In addition, compared to the animals subjected to Pc infection alone, the animals coinfected with SIV and Pc had suppressed total CD4+ T cells, CD4+CD28highCD95high central memory T cells, and CD4+CD28lowCD95- naïve T cells, which may result from the imbalanced immune activation and faster CD4+ T cell turnover in coinfected animals. CONCLUSIONS: SIV infection aggravates malaria physiologically and immunologically in Chinese rhesus monkeys. This nonhuman primate SIV and Pc malaria coinfection model might be a useful tool for investigating human HIV and malaria coinfection and developing effective therapeutics.


Assuntos
Malária/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , China , Coinfecção/complicações , Modelos Animais de Doenças , Humanos , Imunidade Humoral , Macaca mulatta , Malária/complicações , Malária/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
11.
Phys Chem Chem Phys ; 21(20): 10477-10487, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31070629

RESUMO

Since an early report in the 1970s, the mesoscale inhomogeneities formed in an aqueous solution of water-miscible small organic molecules have been debated for over forty years with a variety of explanations. Although it was recently established that these inhomogeneities are supramolecular species caused by trace impurities, the structure of the supramolecular species and the mechanism behind their formation are not yet clear. By means of covalent capture, we herein disclose that the formation mechanism of the supramolecular species consists of a two-step self-assembly process: the small molecules first assemble into primary micelles with a trace amount of impurity, and the formed dynamic ultra-small micelles aggregate further through hydrogen bonding to achieve a buildup of thermodynamic mesoscale inhomogeneities. Based on this finding, supramolecular species have been used as elements for pH-responsive size-changeable drug carriers, which respond to the acidic tumour extracellular milieu and decompose into small particles for deep tumour penetration and effective distribution.

12.
Langmuir ; 33(21): 5275-5282, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28505441

RESUMO

With the special nature of confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water insolubility of RMs hinders their further application prospect especially for applications related to biology. We present herein the first successful transformation of water-insoluble RMs into water-soluble nanoparticles without changing the confined aqueous interiors by hydrolysis/aminolysis of arm-cleavable interfacial cross-linked reverse micelles formed from diester surfactant 1. The unique properties exhibited by the aqueous interiors of the resulting pool-buried water-soluble nanoparticles (PWNPs) were demonstrated both by the template synthesis of gold nanoparticles in the absence of external reductants and by the fluorescence enhancement of encapsulated thioflavin T (ThT). Importantly, the unique potential for PWNPs in biological applications was exemplified by the use of ThT@PWNPs and "cell targeted" ThT@PWNPs as effective optical imaging agents of living cells. This work conceptually overcomes the application bottleneck of RMs and opens an entry to a new class of functional materials.

13.
Org Biomol Chem ; 15(15): 3232-3238, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28327735

RESUMO

With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.


Assuntos
Portadores de Fármacos/química , Micelas , Imagem Molecular/métodos , Nanopartículas/química , Água/química , Acrilamida/química , Transporte Biológico , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Humanos , Solubilidade , Fatores de Tempo
14.
Sensors (Basel) ; 17(6)2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604603

RESUMO

A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

15.
J Mater Chem B ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082127

RESUMO

The ion-sensitive field effect transistor (ISFET) has emerged as a crucial sensor device, owing to its numerous benefits such as label-free operation, miniaturization, high sensitivity, and rapid response time. Currently, ISFET technology excels in detecting ions, nucleic acids, proteins, and cellular components, with widespread applications in early disease screening, condition monitoring, and drug analysis. Recent advancements in sensing techniques, coupled with breakthroughs in nanomaterials and microelectronics, have significantly improved sensor performance. These developments are steering ISFETs toward a promising future characterized by enhanced sensitivity, seamless integration, and multifaceted detection capabilities. This review explores the structure and operational principles of ISFETs, highlighting recent research in ISFET biosensors for biomarker detection. It also examines the limitations of these sensors, proposes potential solutions, and anticipates their future trajectory. This review aims to provide a valuable reference for advancing ISFETs in the field of biomarker measurement.

16.
J Control Release ; 369: 39-52, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508523

RESUMO

The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization. Amphiphilic fluorinated copolymers self-assembled into micelles, encapsulating ciprofloxacin in their cores (CIP@FCBMs) for antibacterial and antibiofilm applications. As a control, fluorine-free copolymer micelles loaded with ciprofloxacin (CIP@BCBMs) were prepared. Although both CIP@FCBMs and CIP@BCBMs exhibited pH-responsive surface charges and lipase-triggered drug release, CIP@FCBMs exhibited powerful antimicrobial and antibiofilm activities in vitro and in vivo, attributed to superior serum stability, higher drug loading, enhanced fluorination-facilitated cellular uptake, and lipase-triggered drug release. Collectively, reversing surface charge, on-demand antibiotic release, and fluorination-mediated nanoparticles hold promise for treating bacterial infections and biofilms.


Assuntos
Antibacterianos , Betaína , Biofilmes , Ciprofloxacina , Lipase , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Lipase/metabolismo , Concentração de Íons de Hidrogênio , Animais , Betaína/química , Betaína/administração & dosagem , Betaína/análogos & derivados , Infecções Estafilocócicas/tratamento farmacológico , Ciprofloxacina/farmacologia , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Micelas , Liberação Controlada de Fármacos , Polímeros/química , Humanos , Ácidos Polimetacrílicos/química
17.
Nat Commun ; 15(1): 2950, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580635

RESUMO

Seawater electroreduction is attractive for future H2 production and intermittent energy storage, which has been hindered by aggressive Mg2+/Ca2+ precipitation at cathodes and consequent poor stability. Here we present a vital microscopic bubble/precipitate traffic system (MBPTS) by constructing honeycomb-type 3D cathodes for robust anti-precipitation seawater reduction (SR), which massively/uniformly release small-sized H2 bubbles to almost every corner of the cathode to repel Mg2+/Ca2+ precipitates without a break. Noticeably, the optimal cathode with built-in MBPTS not only enables state-of-the-art alkaline SR performance (1000-h stable operation at -1 A cm-2) but also is highly specialized in catalytically splitting natural seawater into H2 with the greatest anti-precipitation ability. Low precipitation amounts after prolonged tests under large current densities reflect genuine efficacy by our MBPTS. Additionally, a flow-type electrolyzer based on our optimal cathode stably functions at industrially-relevant 500 mA cm-2 for 150 h in natural seawater while unwaveringly sustaining near-100% H2 Faradic efficiency. Note that the estimated price (~1.8 US$/kgH2) is even cheaper than the US Department of Energy's goal price (2 US$/kgH2).

18.
Food Chem ; 447: 139018, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503067

RESUMO

Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO2/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO2/TP electrode reveal a broad linear response range (0.001 mM - 4 mM), high sensitivity (19,106 and 4264 µA mM-1 cm-2), rapid response time (6 s), and a notably low detection limit (0.18 µM, S/N = 3). Moreover, its efficacy in measuring glucose in beverage samples shows its practical applicability. The impressive performance and structural benefits of the Ag@TiO2/TP electrode highlight its potential in advancing electrochemical sensors for small molecule detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Nanopartículas Metálicas/química , Técnicas Eletroquímicas , Prata , Glucose/química , Eletrodos
19.
Adv Mater ; 36(25): e2401221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563723

RESUMO

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

20.
Nat Commun ; 15(1): 6208, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043681

RESUMO

It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA