Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Anim Physiol Anim Nutr (Berl) ; 105(2): 354-363, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33381881

RESUMO

Recent studies have demonstrated a strong relationship between the intestinal microbiota and the host health. As such, consumers are increasingly becoming more concerned about the potential effect of certain foods/feeds, particularly of transgenic origin on the gut microbiota. Although the European Food Safety Authority has recommended in their guidelines, to study the effect of transgenic food/feed on host-microbiota, yet, few studies have focused on the evaluation of such effects mainly due to culturing difficulties. Therefore, this study was intended to evaluate the potential adverse effects of transgenic diet consumption on some specific gut microflora (Lactobacillus group, Bifidobacterium genus, Escherichia coli subgroup and Enterococcus genus) of rabbits. A total of forty-eight rabbits were randomly assigned into four groups and fed a diet containing a variable proportion of transgenic cottonseeds at 0, 20, 30 and 40% inclusion level, respectively. Changes in the specific or total faecal bacterial population were monitored at five different experimental stages (i.e. 0, 45, 90, 135 and 180 days) using both the traditional plate count method (TM) and quantitative real-time PCR (qPCR). No significant differences (p > .05) were observed concerning numbers of specific bacteria or total bacteria between the control and experimental groups, though qPCR showed numerically higher values in terms of 16S rRNA gene copies as compared to the values obtained from TM. However, such numerical differences were biologically insignificant (p > .05). Similarly, no significant variations were noticed in the calculated B/E (log10 copies of Bifidobacterium per g faces/log10 copies of E. coli genome per g faeces) ratios in all the groups. All the ratios were in the range of 1.24 to 1.30 throughout the experiment, indicating a good balance of intestinal microflora and greater resistance to intestinal disorders. It is therefore concluded that feeding transgenic cottonseeds could not adversely affect the gut microflora of rabbits during a long-term study.


Assuntos
Escherichia coli , Microbiota , Animais , Bifidobacterium , Fezes , RNA Ribossômico 16S , Coelhos
2.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 343-351, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701592

RESUMO

Various feeding studies have been conducted with the different species of animals to evaluate the possible transfer of transgenic DNA (tDNA) from genetically modified (GM) feed into the animal tissues. However, the conclusions drawn from most of such studies are sometimes controversial. Thus, in the present study, an attempt has been made to evaluate the fate of tDNA in rabbits raised on GM cotton-based diet through PCR analysis of the DNA extracted specifically from blood, liver, kidney, heart and intestine (jejunum). A total of 48 rabbits were fed a mixed diet consisting variable proportions of transgenic cottonseeds meal (i.e. 0% w/w, 20% w/w, 30% w/w and 40% w/w) for 180 days. The presence of transgenic DNA fragments (Cry1Ac, Cry2A and CP4 EPSPS) or plant endogenous gene (Sad1) was traced in those specific tissues and organs. The presence of ß-actin (ACTB) was also monitored as an internal control. Neither the transgenic fragments (459 bp of Cry1Ac gene, 167 bp of Cry2A gene and111 bp of CP4 EPSPS gene) nor cotton endogenous reference gene (155 bp of Sad1) could be detected in any of the DNA samples extracted from the rabbit's tissues in both control and transgenic groups. However, 155 bp fragment of the rabbit's reference gene (ACTB) was recovered in all the DNA samples extracted from rabbit tissues. The results obtained from this study revealed that both plant endogenous and transgenic DNA fragments have same fate in rabbit's tissues and were efficiently degraded in the gastrointestinal tract (GIT).


Assuntos
Óleo de Sementes de Algodão/administração & dosagem , DNA de Plantas/metabolismo , DNA Recombinante/metabolismo , Gossypium/genética , Plantas Geneticamente Modificadas , Coelhos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Óleo de Sementes de Algodão/metabolismo , Dieta/veterinária
3.
J Anim Physiol Anim Nutr (Berl) ; 103(1): 305-316, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375051

RESUMO

Genetically modified (GM) crops expressing insect resistance and herbicide tolerance provide a novel approach for improved crop production but their advent at the same time presents serious challenges in terms of food safety. Although prevailing scientific proof has suggested that transgenic crops are analogous to their conventional counterparts, their use in human and animal diet gave rise to emotional public discussion. A number of studies had been conducted to evaluate the potential unintended effects of transgenic crops expressing single transgene, but very few studies for those with multiple transgenes. As the crops with single and multiple transgenes could impart different effects on non-target organisms, thus, risk evaluation of transgenic crops expressing more than one transgene is required to declare their biosafety. The present study was therefore designed to assess the effects of different levels of dietary transgenic cottonseed expressing recombinants proteins produced by Cry1Ac, Cry2A and Cp4epsps genes on haematological indices of growing rabbits. A total of 48 rabbits were assigned to four dietary treatments containing different levels of transgenic cottonseeds (i.e., 0% w/w, 20% w/w, 30% w/w and 40% w/w) with 0% w/w serving as control. Haematological parameters were measured at periodic intervals (0, 45, 90, 135 and 180) days. No significant (p > 0.05) dose-dependent effects were observed in most of the haematological parameters evaluated. Though, significant differences (p < 0.05) were recorded in the level of MCHC, MCH and HCT in some of experimental male and female rabbits, yet, they were not biologically significant, as all the differences were within the normal reference values. Our study suggested that feeding transgenic cottonseed of up to 40% could not adversely affect rabbit's haematological profile. However, further study needs to be conducted with different cotton genotypes expressing both single and polygenic traits before recommending the utilization of transgenic cottonseed in routine livestock feeding.


Assuntos
Proteínas de Bactérias/genética , Óleo de Sementes de Algodão/administração & dosagem , Suplementos Nutricionais , Endotoxinas/genética , Proteínas Hemolisinas/genética , Coelhos/sangue , Proteínas Recombinantes , Ração Animal/análise , Animais , Toxinas de Bacillus thuringiensis , Dieta/veterinária , Eritrócitos , Feminino , Gossypium , Masculino , Plantas Geneticamente Modificadas , Coelhos/crescimento & desenvolvimento , Distribuição Aleatória
4.
J Sci Food Agric ; 96(8): 2613-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857894

RESUMO

Transgenic plants containing Bacillus thuringiensis (Bt) genes are being cultivated worldwide to express toxic insecticidal proteins. However, the commercial utilisation of Bt crops greatly highlights biosafety issues worldwide. Therefore, assessing the risks caused by genetically modified crops prior to their commercial cultivation is a critical issue to be addressed. In agricultural biotechnology, the goal of safety assessment is not just to identify the safety of a genetically modified (GM) plant, rather to demonstrate its impact on the ecosystem. Various experimental studies have been made worldwide during the last 20 years to investigate the risks and fears associated with non-target organisms (NTOs). The NTOs include beneficial insects, natural pest controllers, rhizobacteria, growth promoting microbes, pollinators, soil dwellers, aquatic and terrestrial vertebrates, mammals and humans. To highlight all the possible risks associated with different GM events, information has been gathered from a total of 76 articles, regarding non-target plant and soil inhabiting organisms, and summarised in the form of the current review article. No significant harmful impact has been reported in any case study related to approved GM events, although critical risk assessments are still needed before commercialisation of these crops. © 2016 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis/genética , Produtos Agrícolas/genética , Insetos/efeitos dos fármacos , Animais , Humanos , Plantas Geneticamente Modificadas/genética , Medição de Risco , Solo
5.
J Biosaf Biosecur ; 4(1): 43-49, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35072000

RESUMO

Laboratory diagnostic capacity is crucial for an optimal national response to a public health emergency such as the COVID-19 pandemic. Preventing laboratory-acquired infections and the loss of critical human resources, especially during a public health emergency, requires laboratories to have a good biorisk management system in place. In this study, we aimed to evaluate laboratory biosafety and biosecurity in Pakistan during the COVID-19 pandemic. In this cross-sectional study, a self-rated anonymous questionnaire was distributed to laboratory professionals (LPs) working in clinical diagnostic laboratories, including laboratories performing polymerase chain reaction (PCR)-based COVID-19 diagnostic testing in Punjab, Sindh, Khyber Pakhtunkhwa, and Gilgit-Baltistan provinces as well as Islamabad during March 2020 to April 2020. The questionnaire assessed knowledge and perceptions of LPs, resource availability, and commitment by top management in these laboratories. In total, 58.6% of LPs performing COVID-19 testing reported that their laboratory did not conduct a biorisk assessment before starting COVID-19 testing in their facility. Only 31% of LPs were aware that COVID-19 testing could be performed at a biosafety level 2 laboratory, as per the World Health Organization interim biosafety guidelines. A sufficiently high percentage of LPs did not feel confident in their ability to handle COVID-19 samples (32.8%), spills (43.1%), or other accidents (32.8%). These findings demonstrate the need for effective biosafety program implementation, proper training, and establishing competency assessment methods. These findings also suggested that identifying and addressing gaps in existing biorisk management systems through sustainable interventions and preparing LPs for surge capacity is crucial to better address public health emergencies.

6.
PLoS One ; 15(3): e0230519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187234

RESUMO

Promoters are specified segments of DNA that lead to the initiation of transcription of a specific gene. The designing of a gene cassette for plant transformation is significantly dependent upon the specificity of a promoter. Constitutive Cauliflower mosaic virus promoter, CaMV35S, due to its developmental role, is the most commonly used promoter in plant transformation. While Gossypium hirsutum (Gh) being fiber-specific promoter (GhSCFP) specifically activates transcription in seed coat and fiber associated genes. The Expansin genes are renowned for their versatile roles in plant growth. The overexpression of Expansin genes has been reported to enhance fiber length and fineness. Thus, in this study, a local Cotton variety was transformed with Expansin (CpEXPA1) gene, in the form of two separate cassettes, each with a different promoter, named as 35SEXPA1 and FSEXPA1 expressed under CaMV35S and GhSCFP promoters respectively. Integration and Spatiotemporal relative expression of the transgene were studied in an advanced generation. GhSCFP bearing transgene expression was significantly higher in Cotton fiber than other plant parts. While transgene with CaMV35S promoter was found to be continually expressing in all tissues but the expression was lower in fiber than that expressed under GhSCFP. The temporal expression profile was quite interesting with a gradual increasing pattern of both constructs from 1DPA (days post anthesis) to 18DPA and decreased expression from 24 to 30 DPA. Besides the relative expression of promoters, fiber cellulose quantification and fluorescence intensity were also observed. The study significantly compared the two most commonly used promoters and it is deduced from the results that the GhSCFP promoter could be used more efficiently in fiber when compared with CaMV35S which being constitutive in nature preferred for expression in all parts of the plant.


Assuntos
Fibra de Algodão , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética
7.
Front Plant Sci ; 8: 1670, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085378

RESUMO

As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1) DNA and (2) proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction) and enzyme-linked immunosorbent assay (ELISA) were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA) are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection and the quantification of GM event as the production of more complex GMO is increasing day by day. Therefore, recent approaches like microarray, capillary gel electrophoresis, digital PCR and next generation sequencing are more promising due to their accuracy and precise detection of transgenic contents. The present article is a brief comparative study of all such detection techniques on the basis of their advent, feasibility, accuracy, and cost effectiveness. However, these emerging technologies have a lot to do with detection of a specific event, contamination of different events and determination of fusion as well as stacked gene protein are the critical issues to be addressed in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA