Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986871

RESUMO

mRNA-based vaccines have made a leap forward since the SARS-CoV-2 pandemic and are currently used to develop anti-infectious therapies. If the selection of a delivery system and an optimized mRNA sequence are two key factors to reach in vivo efficacy, the optimal administration route for those vaccines remains unclear. We investigated the influence of lipid components and immunization route regarding the intensity and quality of humoral immune responses in mice. The immunogenicity of HIV-p55Gag encoded mRNA encapsulated into D-Lin-MC3-DMA or GenVoy-ionizable lipid-based LNPs was compared after intramuscular or subcutaneous routes. Three sequential mRNA vaccines were administrated followed by a heterologous boost composed of p24-HIV protein antigen. Despite equivalent IgG kinetic profiles of general humoral responses, IgG1/IgG2a ratio analysis showed a Th2/Th1 balance toward a Th1-biased cellular immune response when both LNPs were administrated via the intramuscular route. Surprisingly, a Th2-biased antibody immunity was observed when DLin-containing vaccine was injected subcutaneously. A protein-based vaccine boost appeared to reverse this balance to a cellular-biased response correlated to an increase in antibody avidity. Our finding suggests that the intrinsic adjuvant effect of ionizable lipids appears to be dependent on the delivery route used, which could be relevant to reach potent and long-lasting immunity after mRNA-based immunization.

2.
Pharmaceutics ; 14(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745869

RESUMO

Polymeric and/or lipid platforms are promising tools for nucleic acid delivery into cells. We previously reported a lipid-polymer nanocarrier, named LipoParticles, consisting of polylactic acid nanoparticles surrounded by cationic lipids, and allowing the addition of mRNA and cationic LAH4-1 peptide at their surface. Although this mRNA platform has shown promising results in vitro in terms of mRNA delivery and translation, the bulk method used to prepare LipoParticles relies on a multistep and time-consuming procedure. Here, we developed an automated process using a microfluidic system to prepare LipoParticles, and we compared it to the bulk method in terms of morphology, physicochemical properties, and ability to vectorize and deliver mRNA in vitro. LipoParticles prepared by microfluidic presented a smaller size and more regular spherical shape than bulk method ones. In addition, we showed that the total lipid content in LipoParticles was dependent on the method of preparation, influencing their ability to complex mRNA. LipoParticles decorated with two mRNA/LAHA-L1 ratios (1/20, 1/5) could efficiently transfect mouse DC2.4 cells except for the automated 1/5 assay. Moreover, the 1/5 mRNA/LAHA-L1 ratio drastically reduced cell toxicity observed in 1/20 ratio assays. Altogether, this study showed that homogeneous LipoParticles can be produced by microfluidics, which represents a promising platform to transport functional mRNA into cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA