Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2318029121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950360

RESUMO

Indonesia has experienced rapid primary forest loss, second only to Brazil in modern history. We examined the fates of Indonesian deforested areas, immediately after clearing and over time, to quantify deforestation drivers in Indonesia. Using time-series satellite data, we tracked degradation and clearing events in intact and degraded natural forests from 1991 to 2020, as well as land use trajectories after forest loss. While an estimated 7.8 Mha (SE = 0.4) of forest cleared during this period had been planted with oil palms by 2020, another 8.8 Mha (SE = 0.4) remained unused. Of the 28.4 Mha (SE = 0.7) deforested, over half were either initially left idle or experienced crop failure before a land use could be detected, and 44% remained unused for 5 y or more. A majority (54%) of these areas were cleared mechanically (not by escaped fires), and in cases where idle lands were eventually converted to productive uses, oil palm plantations were by far the most common outcome. The apparent deliberate creation of idle deforested land in Indonesia and subsequent conversion of idle areas to oil palm plantations indicates that speculation and land banking for palm oil substantially contribute to forest loss, although failed plantations could also contribute to this dynamic. We also found that in Sumatra, few lowland forests remained, suggesting that a lack of remaining forest appropriate for palm oil production, together with an extensive area of banked deforested land, may partially explain slowing forest loss in Indonesia in recent years.


Assuntos
Conservação dos Recursos Naturais , Florestas , Indonésia , Árvores/crescimento & desenvolvimento , Agricultura
2.
Front Cell Dev Biol ; 12: 1347126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827524

RESUMO

Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.

4.
PeerJ ; 12: e17790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071131

RESUMO

Background: Understanding human stem cell differentiation into osteoblasts and osteoclasts is crucial for bone regeneration and disease modeling. Numerous morphological techniques have been employed to assess this differentiation, but a comprehensive review of their application and effectiveness is lacking. Methods: Guided by the PRISMA framework, we conducted a rigorous search through the PubMed, Web of Science and Scopus databases, analyzing 254 articles. Each article was scrutinized against pre-defined inclusion criteria, yielding a refined selection of 14 studies worthy of in-depth analysis. Results: The trends in using morphological approaches were identified for analyzing osteoblast and osteoclast differentiation. The three most used techniques for osteoblasts were Alizarin Red S (mineralization; six articles), von Kossa (mineralization; three articles) and alkaline phosphatase (ALP; two articles) followed by one article on Giemsa staining (cell morphology) and finally immunochemistry (three articles involved Vinculin, F-actin and Col1 biomarkers). For osteoclasts, tartrate-resistant acid phosphatase (TRAP staining) has the highest number of articles (six articles), followed by two articles on DAPI staining (cell morphology), and immunochemistry (two articles with VNR, Cathepsin K and TROP2. The study involved four stem cell types: peripheral blood monocyte, mesenchymal, dental pulp, and periodontal ligament. Conclusion: This review offers a valuable resource for researchers, with Alizarin Red S and TRAP staining being the most utilized morphological procedures for osteoblasts and osteoclasts, respectively. This understanding provides a foundation for future research in this rapidly changing field.


Assuntos
Diferenciação Celular , Osteoblastos , Osteoclastos , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Coloração e Rotulagem/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
Stem Cell Res Ther ; 15(1): 160, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835014

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS: Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS: The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS: The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome Metabólica , Geleia de Wharton , Animais , Síndrome Metabólica/terapia , Síndrome Metabólica/patologia , Síndrome Metabólica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ratos , Geleia de Wharton/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Injeções Intravenosas , Humanos , Dieta Hiperlipídica/efeitos adversos
6.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732646

RESUMO

After a careful and comprehensive review of our data and the figures in our manuscript, we have identified an area where we believe a correction is warranted in order to enhance the clarity and precision of our findings [...].

7.
PLoS One ; 19(5): e0302475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748685

RESUMO

Cardiac troponin I (cTnI) is a cardiac biomarker for diagnosing ischemic heart disease and acute myocardial infarction. Current biochemical assays use antibodies (Abs) due to their high specificity and sensitivity. However, there are some limitations, such as the high-cost production of Abs due to complex instruments, reagents, and steps; the variability of Abs quality from batch to batch; the low stability at high temperatures; and the difficulty of chemical modification. Aptamer overcomes the limitations of antibodies, such as relatively lower cost, high reproducibility, high stability, and ease of being chemically modified. Aptamers are three-dimensional architectures of single-stranded RNA or DNA that bind to targets such as proteins. Six aptamers (Tro1-Tro6) with higher binding affinity than an antibody have been identified, but the molecular interaction has not been studied. In this study, six DNA aptamers were modeled and docked to cTnI protein. Molecular docking revealed that the interaction between all aptamer and cTnI happened in the similar cTnI region. The interaction between aptamer and cTnI involved hydrophobic interaction, hydrogen bonds, π-cation interactions, π-stack interactions, and salt-bridge formation. The calculated binding energy of all complexes was negative, which means that the complex formation was thermodynamically favorable. The electrostatic energy term was the main driving force of the interaction between all aptamer and cTnI. This study could be used to predict the behavior of further modified aptamer to improve aptamer performance.


Assuntos
Aptâmeros de Nucleotídeos , DNA de Cadeia Simples , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Troponina I , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Ligação de Hidrogênio , Ligação Proteica , Termodinâmica , Troponina I/metabolismo , Troponina I/química
8.
Biol. Res ; 55: 11-11, 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1383903

RESUMO

BACKGROUND: Functional bioengineered tooth regeneration using autologous or allogeneic alternative differentiated cells sources are thought to have a great potential in replacing conventional dentures. This study investigated the potential of dental pulp stem cells (DPSCs) conditioned medium for odontoblastic differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs). The DPSCs derived from healthy adult permanent first molars were cultured at high confluence prior to conditioned medium collection. The WJMSCs were cultured in six different treatments, with varying ratios of culture media to DPSCs-conditioned medium. MTT assay was used to measure the rate of proliferation of WJMSCs, while immunocytochemistry staining was utilised to detect the expression of dental matrix protein 1 (DMP-1). The deposited calcium was detected and analysed via Alizarin-Red Staining (ARS). RESULTS: It was found that the proliferation of WJMSCs cultured under the mixture of complete medium and DPSCs conditioned medium showed significantly lower than the control; presumably the cells started to exit proliferative state prior differentiation. In 14 days of induction, the cells in all treatments showed osteoblastic-like morphology, calcium compound deposits were observed at day 7, 10 and 14 of differentiation suggested that DPSCs conditioned medium could lead to osteoblastic/odontoblastic differentiation. However, the DMP-1 protein can be seen only expressed minimally at day 14 of conditioned medium induction. CONCLUSIONS: In conclusion, DPSCs conditioned medium appeared as a potential odontoblastic induction approach for WJMSCs. To further investigate the stimulatory effects by DPSCs conditioned medium, specific signalling pathway need to be elucidated to enhance the differentiation efficiency.


Assuntos
Células-Tronco , Polpa Dentária , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Proliferação de Células
9.
Biol. Res ; 55: 38-38, 2022. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1429903

RESUMO

BACKGROUND: Excitotoxicity-induced in vivo injury models are vital to reflect the pathophysiological features of acute spinal cord injury (SCI) in humans. The duration and concentration of chemical treatment controls the extent of neuronal cell damage. The extent of injury is explained in relation to locomotor and behavioural activity. Several SCI in vivo methods have been reported and studied extensively, particularly contusion, compression, and transection models. These models depict similar pathophysiology to that in humans but are extremely expensive (contusion) and require expertise (compression). Chemical excitotoxicity-induced SCI models are simple and easy while producing similar clinical manifestations. The kainic acid (KA) excitotoxicity model is a convenient, low-cost, and highly reproducible animal model of SCI in the laboratory. The basic impactor approximately cost between 10,000 and 20,000 USD, while the kainic acid only cost between 300 and 500 USD, which is quite cheap as compared to traditional SCI method. METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher. RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment. CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.


Assuntos
Humanos , Animais , Ratos , Traumatismos da Medula Espinal , Traumatismos da Coluna Vertebral/complicações , Paraplegia/complicações , Ratos Sprague-Dawley , Modelos Animais de Doenças , Ácido Caínico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA