Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Biochem Biophys Res Commun ; 682: 199-206, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826943

RESUMO

Although accumulating evidence has revealed that autophagy inhibition contributes to the development of pathological cardiac hypertrophy, the mechanisms leading to declined autophagy activity in the hypertrophic heart remain to be elucidated. Exosomes are known to be important mediators of intercellular communication, and the involvement of exosomes in cardiovascular abnormities has attracted increasing attentions. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. Here, we investigated the potential role of CFs-derived exosomes in regulating cardiomyocyte hypertrophy and autophagy. Exosomes from rat CFs treated with angiotensin II (Ang II-CFs-exosomes) were collected and characterized. Our experiments showed that these exosomes could induce hypertrophic responses and impair autophagy activity in primary neonatal rat cardiomyocytes (NRCMs). Ang II-CFs-exosomes blocked the autophagic flux of NRCMs via inhibiting the formation of autolysosomes. Moreover, the pro-hypertrophic effects and autophagy inhibition induced by Ang II-CFs-exosomes was validated in mice receiving injection of the exosomes. These findings highlight a novel role of Ang II-CFs-exosomes in suppressing cardiomyocyte autophagy, which may help to better understand the pathogenesis of cardiac hypertrophy.


Assuntos
Exossomos , Miócitos Cardíacos , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Angiotensina II/metabolismo , Exossomos/metabolismo , Cardiomegalia/metabolismo , Autofagia , Fibroblastos/metabolismo
2.
Biochem Biophys Res Commun ; 661: 64-74, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37087800

RESUMO

Myocardial infarction (MI) contributes to an increased risk of incident heart failure and sudden death, but there is still a lack of effective treatment in clinic. Recently, growing evidence has indicated that abnormal expression of microRNAs (miRNAs) plays a crucial role in cardiovascular diseases. In this research, the involvement of miRNA-214-3p in MI was explored. A mouse model of MI was established by ligation of the left anterior descending coronary artery, and primary cultures of neonatal rat cardiomyocytes (NRCMs) were submitted to hypoxic treatment to stimulate cellular injury in vitro. Our results showed that miR-214-3p level was significantly upregulated in the infarcted region of mouse hearts and in NRCMs exposed to hypoxia, accompanying with an obvious elevation of ferroptosis. Inhibition of miR-214-3p by antagomir injection improved cardiac function, decreased infarct size, and attenuated iron accumulation and oxidant stress in myocardial tissues. MiR-214-3p could also promote ferroptosis and cellular impairments in NRCMs, while miR-214-3p inhibitor effectively protected cells from hypoxia. Furthermore, dual luciferase reporter gene assay revealed that malic enzyme 2 (ME2) is a direct target of miR-214-3p. In cardiomyocytes, overexpression of ME2 ameliorated the detrimental effects and excessive ferroptosis induced by miR-214-3p mimic, whereas ME2 depletion compromised the protective role of miR-214-3p inhibitor against hypoxic injury and ferroptosis. These findings suggest that miR-214-3p contributes to enhanced ferroptosis during MI at least partially via suppressing ME2. Inhibition of miR-214-3p may be a new approach for tackling MI.


Assuntos
Ferroptose , MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Ratos , Apoptose , Hipóxia/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
3.
Cell Biol Int ; 46(2): 288-299, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854520

RESUMO

MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO). The hypertrophic responses were monitored by measuring the cell surface area and expression of hypertrophic markers including ß-myosin heavy chain (ß-MHC) and atrial natriuretic factor (ANF). Bioinformatic prediction tools and dual-luciferase reporter assay were performed to identify the target gene of miR-339-5p. Quantitative real-time polymerase chain reaction and western blot analysis were used to determine the levels of miR-339-5p and its downstream effectors. Our data showed that miR-339-5p was upregulated during cardiomyocyte hypertrophy triggered by ISO. MiR-339-5p overexpression resulted in enlargement of cell size and increased the levels of hypertrophic markers. In contrast, inhibition of miR-339-5p significantly attenuated ISO-induced hypertrophic responses of NRCMs. Valosin-containing protein (VCP), a suppressor of cardiac hypertrophy via inhibiting mechanistic target of rapamycin (mTOR) signaling, was validated as a target of miR-339-5p. MiR-339-5p suppressed VCP protein expression, leading to elevated phosphorylation of mTOR and ribosomal protein S6 kinase (S6K). VCP depletion activated the mTOR/S6K cascade and could compromise the anti-hypertrophic effects of miR-339-5p inhibitor. Additionally, the hypertrophic responses caused by miR-339-5p was alleviated in the presence of mTOR inhibitor rapamycin. In conclusion, our research revealed that miR-339-5p promoted ISO-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling, suggesting a promising therapeutic intervention by interfering miR-339-5p.


Assuntos
Fenômenos Biológicos , MicroRNAs , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Isoproterenol/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo , Proteína com Valosina/metabolismo
4.
Acta Pharmacol Sin ; 42(5): 715-725, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32814818

RESUMO

Cardiac fibrosis is a typical pathological change in various cardiovascular diseases. Although it has been recognized as a crucial risk factor responsible for heart failure, there is still a lack of effective treatment. Recent evidence shows that microRNAs (miRNAs) play an important role in the development of cardiac fibrosis and represent novel therapeutic targets. In this study we tried to identify the cardiac fibrosis-associated miRNA and elucidate its regulatory mechanisms in mice. Cardiac fibrosis was induced by infusion of angiotensin II (Ang II, 2 mg·kg-1·d-1) for 2 weeks via osmotic pumps. We showed that Ang II infusion induced cardiac disfunction and fibrosis accompanied by markedly increased expression level of miR-99b-3p in heart tissues. Upregulation of miR-99b-3p and fibrotic responses were also observed in cultured rat cardiac fibroblasts (CFs) treated with Ang II (100 nM) in vitro. Transfection with miR-99b-3p mimic resulted in the overproduction of fibronectin, collagen I, vimentin and α-SMA, and facilitated the proliferation and migration of CFs. On the contrary, transfection with specific miR-99b-3p inhibitor attenuated Ang II-induced fibrotic responses. Similarly, intravenous injection of specific miR-99b-3p antagomir could prevent Ang II-infused mice from cardiac dysfunction and fibrosis. We identified glycogen synthase kinase-3 beta (GSK-3ß) as a direct target of miR-99b-3p. In CFs, miR-99b-3p mimic significantly reduced the expression of GSK-3ß, leading to activation of its downstream profibrotic effector Smad3, whereas miR-99b-3p inhibitor caused anti-fibrotic effects. GSK-3ß knockdown ameliorated the anti-fibrotic role of miR-99b-3p inhibitor. These results suggest that miR-99b-3p contributes to Ang II-induced cardiac fibrosis at least partially through GSK-3ß. The modulation of miR-99b-3p may provide a new approach for tackling fibrosis-related cardiomyopathy.


Assuntos
Doenças Cardiovasculares/metabolismo , Fibrose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Angiotensina II , Animais , Antagomirs/farmacologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Fibroblastos/efeitos dos fármacos , Fibrose/induzido quimicamente , Fibrose/complicações , Fibrose/patologia , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
5.
Acta Pharmacol Sin ; 42(9): 1422-1436, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33247214

RESUMO

Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice. We first found that SIRT3 deficiency exacerbated Ang II-induced cardiac hypertrophy, and resulted in the development of spontaneous heart failure. Since miRNAs play crucial roles in the pathogenesis of cardiac hypertrophy, we performed miRNA sequencing on myocardium tissues from Ang II-infused Sirt3-/- and wild type mice, and identified microRNA-214 (miR-214) was significantly up-regulated in Ang II-infused mice. Similar results were also obtained in Ang II-treated neonatal mouse cardiomyocytes (NMCMs). Using dual-luciferase reporter assay we demonstrated that SIRT3 was a direct target of miR-214. Overexpression of miR-214 in vitro and in vivo decreased the expression of SIRT3, which resulted in extensive mitochondrial damages, thereby facilitating the onset of hypertrophy. In contrast, knockdown of miR-214 counteracted Ang II-induced detrimental effects via restoring SIRT3, and ameliorated mitochondrial morphology and respiratory activity. Collectively, these results demonstrate that miR-214 participates in Ang II-induced cardiac hypertrophy by directly suppressing SIRT3, and subsequently leading to mitochondrial malfunction, suggesting the potential of miR-214 as a promising intervention target for antihypertrophic therapy.


Assuntos
Cardiomegalia/metabolismo , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/metabolismo , Sirtuína 3/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Sirtuína 3/genética
6.
Pharmacol Res ; 161: 105104, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739429

RESUMO

BACKGROUND AND PURPOSE: Although histone lysine methylation has been extensively studied for their participation in pathological cardiac hypertrophy, the potential regulatory role of histone arginine methylation remains to be elucidated. The present study focused on H4R3 symmetric di-methylation (H4R3me2s) induced by protein arginine methyltransferase 5 (Prmt5), and explored its epigenetic regulation and underlying mechanisms in cardiomyocyte hypertrophy. METHODS AND RESULTS: 1. The expressions of Prmt5 and H4R3me2s were suppressed in cardiac hypertrophy models in vivo and in vitro; 2. Prmt5 silencing or its inhibitor EPZ, or knockdown of cooperator of Prmt5 (Copr5) to disrupt H4R3me2s, facilitated cardiomyocyte hypertrophy, whereas overexpression of wild type Prmt5 rather than the inactive mutant protected cardiomyocytes against hypertrophy; 3. ChIP-sequence analysis identified Filip1L as a target gene of Prmt5-induced H4R3me2s; 4. Knockdown or inhibition of Prmt5 impaired Filip1L transcription and subsequently prevented ß-catenin degradation, thus augmenting cardiomyocyte hypertrophy. CONCLUSIONS: The present study reveals that Prmt5-induced H4R3me2s ameliorates cardiomyocyte hypertrophy by transcriptional upregulation of Filip1L and subsequent enhancement of ß-catenin degradation. Deficiency of Prmt5 and the resulting suppression of H4R3me2s might facilitate the development of pathological cardiac hypertrophy. Prmt5 might serve as a key epigenetic regulator in pathological cardiac hypertrophy.


Assuntos
Histonas/metabolismo , Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Proteína-Arginina N-Metiltransferases/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , beta Catenina/metabolismo , Animais , Arginina , Células Cultivadas , Modelos Animais de Doenças , Epigênese Genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Metilação , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Proteína-Arginina N-Metiltransferases/genética , Ratos Sprague-Dawley , Transdução de Sinais
7.
Acta Pharmacol Sin ; 41(11): 1377-1386, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32968208

RESUMO

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency-use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. From pharmacological and cardiovascular perspectives, therefore, the treatment of COVID-19 with chloroquine and its derivatives should be systematically evaluated, and patients should be routinely monitored for cardiovascular conditions to prevent lethal adverse events.


Assuntos
Doenças Cardiovasculares/complicações , Cloroquina/análogos & derivados , Cloroquina/uso terapêutico , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Antivirais/farmacologia , COVID-19 , Cloroquina/farmacologia , Humanos , Pandemias , Tratamento Farmacológico da COVID-19
8.
Cell Biol Int ; 43(6): 695-705, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977566

RESUMO

Cardiac hypertrophy is a common pathological change found in various cardiovascular diseases. Although it has long been recognized as an important risk factor responsible for heart failure, there is still a lack of effective treatments in clinic. Chrysophanol is a natural compound with multiple biological activities and protective roles in the cardiovascular system. However, its potential effect on cardiac hypertrophy remains unclear. In the current study, we found that chrysophanol could protect against isoproterenol (ISO)-induced cardiac hypertrophy both in vitro and in vivo. Increase of cell surface and hypertrophic marker expression induced by ISO in neonatal rat cardiomyocytes was downregulated by chrysophanol. Moreover, chrysophanol ameliorated the abnormal changes of cardiac structure and function in rats subjected to ISO injection, as shown by echocardiography and morphometry measurements. Further mechanistical investigation demonstrated that chrysophanol inhibited phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) induced by ISO. Nuclear translocation of STAT3 and transcription of downstream genes promoted by ISO treatment were also remarkably suppressed by chrysophanol. Taken together, our findings revealed that chrysophanol attenuated ISO-induced cardiac hypertrophy by inhibiting JAK2/STAT3 signaling pathway. Chrysophanol may be a potential candidate compound for the prevention and treatment of hypertrophy-related cardiomyopathy.


Assuntos
Antraquinonas/farmacologia , Cardiomegalia/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Antraquinonas/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/metabolismo , Cardiomiopatias/tratamento farmacológico , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Acta Pharmacol Sin ; 40(5): 589-598, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30030529

RESUMO

High-mobility group box 1 (HMGB1) exhibits various functions according to its subcellular location, which is finely conditioned by diverse post-translational modifications, such as acetylation. The nuclear HMGB1 may prevent from cardiac hypertrophy, whereas its exogenous protein is proven to induce hypertrophic response. This present study sought to investigate the regulatory relationships between poly(ADP-ribose) polymerase 1 (PARP1) and HMGB1 in the process of pathological myocardial hypertrophy. Primary-cultured neonatal rat cardiomyocytes (NRCMs) were respectively incubated with three cardiac hypertrophic stimulants, including angiotensin II (Ang II), phenylephrine (PE), and isoproterenol (ISO), and cell surface area and the mRNA expression of hypertrophic biomarkers were measured. the catalytic activity of PARP1 was remarkably enhanced, meanwhile HMGB1 excluded from the nucleus. PARP1 overexpression by infecting with adenovirus PARP1 (Ad-PARP1) promoted the nuclear export of HMGB1, facilitated its secretion outside the cell, aggravated cardiomyocyte hypertrophy, which could be alleviated by HMGB1 overexpression. PE treatment led to the similar results, while that effect was widely depressed by PARP1 silencing or its specific inhibitor AG14361. Moreover, SD rats were intraperitoneally injected with 3-aminobenzamide (3AB, 20 mg/kg every day, a well-established PARP1 inhibitor) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks, echocardiography and morphometry of the hearts were measured. Pre-treatment of 3AB relieved AAC-caused the translocation of nuclear HMGB1 protein, cardiac hypertrophy, and heart dysfunction. Our research offers a novel evidence that PARP1 combines with HMGB1 and accelerates its translocation from nucleus to cytoplasm, and the course finally causes cardiac hypertrophy.


Assuntos
Cardiomegalia/etiologia , Núcleo Celular/metabolismo , Proteína HMGB1/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Ratos Sprague-Dawley
10.
Arch Biochem Biophys ; 640: 37-46, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331689

RESUMO

AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways. It has been shown that activation of AMPK could inhibit fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby suppressing cardiac fibrosis. Baicalin, the major component found in skullcap, possesses multiple protective effects on the cardiovascular system. However, little is known about the effect of baicalin on cardiac fibrosis and the molecular mechanism by which baicalin exerts its anti-fibrotic effects has not been investigated. In this study, we revealed that baicalin could inhibit cell proliferation, collagen synthesis, fibronectin (FN) and Connective tissue growth factor (CTGF) protein expression in cardiac fibroblasts induced by angiotensin Ⅱ (Ang Ⅱ). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, baicalin inhibited transforming growth factor-ß (TGF-ß)/Smads signaling pathway stimulated with Ang Ⅱ through activating AMPK. Subsequently, we also demonstrated that baicalin attenuated Ang Ⅱ-induced Smad3 nuclear translocation, and interaction with transcriptional coactivator p300, but promoted the interaction of p300 and AMPK. Taken together, these results provide the first evidence that the effect of baicalin against cardiac fibrosis may be attributed to its regulation on AMPK/TGF-ß/Smads signaling, suggesting the therapeutic potential of baicalin on the prevention of cardiac fibrosis and heart failure.


Assuntos
Flavonoides/farmacologia , Cardiopatias/prevenção & controle , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Angiotensina II/farmacologia , Animais , Células Cultivadas , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Relação Dose-Resposta a Droga , Fibronectinas/metabolismo , Fibrose , Cardiopatias/induzido quimicamente , Ratos , Ratos Sprague-Dawley
11.
Acta Pharmacol Sin ; 39(2): 184-194, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28816235

RESUMO

The RasGAP SH3 domain-binding proteins (G3BPs) are a family of RNA-binding proteins that can co-ordinate signal transduction and post-transcriptional gene regulation. G3BPs have been shown to be involved in mediating a great diversity of cellular processes such as cell survival, growth, proliferation and apoptosis. But the potential roles of G3BPs in the pathogenesis and progression of cardiovascular diseases remain to be clarified. In the present study, we provide the first evidence that suggests the participation of G3BP2 in cardiac hypertrophy. In cultured neonatal rat cardiomyocytes (NRCMs), treatment with isoproterenol (ISO, 0.1-100 µmol/L) significantly elevated the mRNA and protein levels of G3BP2. Similar results were observed in the hearts of rats subjected to 7D-injection of ISO, accompanied by obvious heart hypertrophy and elevated the expression of hypertrophy marker genes ANF, BNP and ß-MHC in heart tissues. Overexpression of G3BP2 in NRCMs led to hypertrophic responses evidenced by increased cellular surface area and the expression of hypertrophy marker genes, whereas knockdown of G3BP2 significantly attenuated ISO-induced hypertrophy of NRCMs. We further showed that G3BP2 directly interacted with IκBα and promoted the aggregation of the NF-κB subunit p65 in the nucleus and increased NF-κB-dependent transcriptional activity. NF-κB inhibition with PDTC (50 µmol/L) or p65 knockdown significantly decreased the hypertrophic responses in NRCMs induced by ISO or G3BP2 overexpression. These results give new insight into the functions of G3BP2 and may help further elucidate the molecular mechanisms underlying cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Reguladores de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Isoproterenol , Masculino , Miócitos Cardíacos/patologia , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/antagonistas & inibidores , Pirrolidinas/farmacologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos/farmacologia , Fator de Transcrição RelA/metabolismo
12.
Biochim Biophys Acta ; 1863(12): 3027-3039, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27686254

RESUMO

The Forkhead box-containing protein, O subfamily 3 (FoxO3) transcription factor negatively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, methylation and glycosylation. Here, we introduce a novel modification of the FoxO3 protein in cardiomyocytes: poly(ADP-ribosyl)ation (PARylation) mediated by poly(ADP-ribose) polymerase-1 (PARP1). This process catalyzes the NAD+-dependent synthesis of polymers of ADP-ribose (PAR) and their subsequent attachment to target proteins by PARPs. Primary-cultured neonatal rat cardiomyocytes were incubated with isoproterenol (ISO) to induce hypertrophy, or were infected with recombinant adenovirus vectors harboring PARP1 cDNA (Ad-PARP1). Sprague-Dawley (SD) rats were treated with ISO to induce cardiac hypertrophy, or were injected with Ad-PARP1 into the anterior and posterior left ventricular walls. Cardiomyocyte surface area, the mRNA expression of hypertrophic biomarkers, echocardiography, morphometry of the hearts were measured. The PARP1 activity was tested by cellular PAR levels. Interactions of PARP1 and FoxO3 were investigated by co-immunoprecipitation and immunofluorescence technique. PARylation of FoxO3 mediated by PARP1 facilitated its phosphorylation at the T32, S252 and S314 sites, triggered its nucleus export and suppressed its transcriptional activity and target genes expression, ultimately inducing cardiac hypertrophy. Additionally, PARP1 silencing or specific inhibition by 3-Aminobenzamide (3AB) and veliparib (ABT-888) alleviated the inhibition of FoxO3 activity by ISO, thus suppressing ISO-induced cardiac hypertrophy. Our data provide the first evidence that PARP1 exacerbates cardiac hypertrophy by PARylation of FoxO3.


Assuntos
Cardiomegalia/metabolismo , Proteína Forkhead Box O3/metabolismo , Miócitos Cardíacos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Ecocardiografia , Proteína Forkhead Box O3/genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoproterenol , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transcrição Gênica
13.
Surg Endosc ; 31(8): 3203-3209, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27864725

RESUMO

BACKGROUND: A few modified approaches have been reported for performing endoscope-assisted dissections of benign parotid tumors, but none that use incisions totally hidden in a natural furrow. This study evaluated the feasibility of performing endoscope-assisted extracapsular dissections of benign parotid tumors using a single cephaloauricular furrow incision. METHODS: Forty-six patients with benign parotid superficial lobe tumors were randomly divided into two groups: an endoscope-assisted (21 patients) group or a conventional (25 patients) surgery group. Perioperative and postoperative outcomes of the patients were evaluated, including the maximum diameter of the tumors, length of the incision, operating time, estimated blood loss during the operation, amount and duration of drainage, satisfaction scores based on the cosmetic results, perioperative complications, and follow-up information. RESULTS: The diameters of the tumors were comparable between the groups, and all operations were successfully performed as planned. The mean length of the incision in the endoscope-assisted group (3.6 ± 0.5 cm) was significantly shorter than that in the conventional group (9.1 ± 1.9). Meanwhile, the intraoperative blood loss, amount of drainage, perioperative complications, and cosmetic outcomes were all improved in the endoscope-assisted group. No tumor recurrence was found during 11-40 months of follow-up. CONCLUSIONS: Cephaloauricular furrow incisions were totally and naturally hidden in this procedure. Endoscope-assisted extracapsular dissections of benign parotid tumors via a small cephaloauricular furrow incision were found to be feasible and reliable, providing a minimally invasive approach and a satisfactory appearance.


Assuntos
Recidiva Local de Neoplasia/cirurgia , Neoplasias Parotídeas/cirurgia , Adulto , Perda Sanguínea Cirúrgica , Pavilhão Auricular/cirurgia , Endoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Complicações Pós-Operatórias , Resultado do Tratamento , Adulto Jovem
14.
J Prosthet Dent ; 118(1): 69-75, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27927283

RESUMO

STATEMENT OF PROBLEM: Cobalt-chromium (Co-Cr) alloys have been widely used for metal-ceramic fixed prostheses and can be fabricated using conventionally cast or new computer-aided technology. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation. PURPOSE: The purpose of this in vitro study was to evaluate the metal-ceramic bond strength of a Co-Cr alloy made by casting, milling, and selective laser melting (SLM). MATERIAL AND METHODS: Co-Cr specimens (25×3×0.5 mm) were prepared using a cast, milled, or SLM method and layered with ceramic (8×3×1.1 mm). Metal-ceramic bond strength was measured by a 3-point bend test according to ISO9693. The area fraction of adherence porcelain (AFAP) was determined by measuring the Si content of the specimens with scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The metal-ceramic bond strength and AFAP results were analyzed using 1-way analysis of variance and the Bonferroni post hoc test (α=.05). SEM/EDS and metallurgic microscopy were also used to study the specimens' morphology, elemental composition, and metallurgic structure. RESULTS: No significant differences (P>.05) were found for the bond strength among cast, milled, and SLM Co-Cr alloys. The milled and SLM groups showed significantly more porcelain adherence than the cast group (P<.001). The surface morphologies and oxidation characters of cast, milled, and SLM Co-Cr alloys were similar, whereas the metallurgic structures were different. CONCLUSIONS: The bond strength between ceramics and Co-Cr alloys is independent of the manufacturing method. However, milling- and SLM-produced alloys had better porcelain adherence.


Assuntos
Ligas de Cromo/química , Colagem Dentária , Técnica de Fundição Odontológica , Porcelana Dentária/química , Lasers , Ligas Metalo-Cerâmicas/química , Cerâmica/química , Humanos , Teste de Materiais , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Maleabilidade , Espectrometria por Raios X , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
15.
J Prosthodont ; 26(3): 201-205, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26375868

RESUMO

PURPOSE: The focus of this study was to evaluate the effect of reading aloud on masticatory performance and patient satisfaction of patients rehabilitated with conventional complete dentures for the first time. MATERIALS AND METHODS: Sixty-two edentulous patients who received conventional complete denture treatment for the first time were randomly divided into two equal groups. After insertion of the dentures, patients in group I were asked to read a news report three times per day for 4 weeks, while those in group II did not read. The reading duration increased by 5 minutes per week, from 5 minutes in the first week to 20 minutes in the fourth week. The patients' mouth opening during reading aloud was advised to gradually increase throughout the training project. Two and four weeks after insertion of the dentures, masticatory performance was assessed using the sieving method, and patient satisfaction was measured using a visual analogue scale, which combined the patient's perceptions in relation to comfort, esthetics, stability, ability to talk, and ability to chew. RESULTS: There were significant improvements in masticatory performance with reading aloud exercises after the insertion of complete dentures (p < 0.001) at the 2- and 4-week follow-up visits. Masticatory performance also showed significant improvement within each group in the follow-up periods (p < 0.001). No significant differences were found between the two groups in patient satisfaction (p > 0.05) at 2 weeks, but at 4 weeks, patient satisfaction regarding stability, ability to talk, and ability to chew was significantly higher for group I (p < 0.001). CONCLUSIONS: The results of this study suggest that reading aloud exercises significantly improved early masticatory performance and patient satisfaction for denture wearers who were treated with conventional complete dentures for the first time, and may be a useful clinical application for more effective denture treatment.


Assuntos
Prótese Total , Terapia por Exercício/métodos , Boca Edêntula/reabilitação , Satisfação do Paciente , Leitura , Idoso , Retenção de Dentadura , Estética Dentária , Feminino , Humanos , Masculino , Mastigação/fisiologia , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
16.
Cardiovasc Diabetol ; 15: 19, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833058

RESUMO

BACKGROUND: Abnormalities in lipid and glucose metabolism are constantly observed in type 2 diabetes. However, these abnormalities can be ameliorated by polydatin. Considering the important role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in metabolic diseases, we explore the possible mechanism of polydatin on lipid and glucose metabolism through its effects on PCSK9. METHODS: An insulin-resistant HepG2 cell model induced by palmitic acid (PA) and a db/db mice model were used to clarify the role of polydatin on lipid and glucose metabolism. RESULTS: In insulin-resistant HepG2 cells, polydatin upregulated the protein levels of LDLR and GCK but repressed PCSK9 protein expression, besides, polydatin also inhibited the combination between PCSK9 and LDLR. Knockdown and overexpression experiments indicated that polydatin regulated LDLR and GCK expressions through PCSK9. In the db/db mice model, we found that polydatin markedly enhanced GCK and LDLR protein levels, and inhibited PCSK9 expression in the liver. Molecular docking assay was further performed to analyze the possible binding mode between polydatin and the PCSK9 crystal structure (PDB code: 2p4e), which indicated that steady hydrogen bonds formed between polydatin and PCSK9. CONCLUSIONS: Our study indicates that polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating PCSK9.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Estilbenos/farmacologia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Regulação para Baixo , Medicamentos de Ervas Chinesas/metabolismo , Feminino , Quinases do Centro Germinativo , Glucosídeos/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/metabolismo , Lipídeos/sangue , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ácido Palmítico/farmacologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Pró-Proteína Convertases/genética , Ligação Proteica , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Estilbenos/metabolismo , Fatores de Tempo , Transfecção
17.
J Pharmacol Sci ; 132(1): 31-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27094368

RESUMO

SIRT6 is a member of the sirtuin family of class III histone deacetylases. It plays important roles in regulating genomic stability, metabolism, stress response and aging. Our previous study has revealed that SIRT6 attenuates myocardial hypertrophy by inhibiting NF-κB activation, but the related molecular mechanisms remain to be clarified. In the present study, we showed that the p300 acetylase was involved in the protective effect of SIRT6 against phenylephrine (PE)-induced cardiomyocyte hypertrophy. In cultured neonatal rat cardiomyocytes, the expression and activity of SIRT6 declined following PE treatment, while the protein level of p300 was upregulated. PE triggered significant hypertrophic responses as manifested by increase in cellular surface area and expression of hypertrophy marker genes, which could be blocked by SIRT6 overexpression. Mechanistically, SIRT6 reduced p300 protein expression via promoting its degradation, which could be attributed to the suppression of PI3K/Akt signaling. The downregulation of p300 protein level by SIRT6 subsequently decreased the acetylation and transcriptional activity of NF-κB p65 subunit. These findings help to further understand mechanisms underlying the anti-hypertrophic role of SIRT6 and suggest the potential of SIRT6 as a therapeutic target for cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Proteína p300 Associada a E1A/metabolismo , Miócitos Cardíacos/metabolismo , Sirtuínas/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Células Cultivadas , Proteína p300 Associada a E1A/genética , NF-kappa B/genética , Fenilefrina , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Sirtuínas/genética
18.
Eur J Oral Sci ; 124(5): 498-503, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388226

RESUMO

The creation of a high bond strength between machined computer-manufactured pure titanium and porcelain remains problematic, and the effects of a silica coating on the bond strength of milled pure titanium bonded to dental porcelain require further investigation. The objective of this study was to evaluate the bond strength of machined pure titanium, with an intermediate coating of silica, to dental porcelain. In this work, 24 specimens of milled pure titanium were prepared and randomly divided into test and control groups, in which the test group was coated with silica using the sol-gel dipping technique. The metal-ceramic bond strength was evaluated, according to ISO 9693 standards, using the three-point bending test, and scanning electron microscopy and energy-dispersive spectroscopy were used to study the microstructure and elemental composition of the specimens. The bonding strength of the silica-coated group was significantly higher than that of the control group, and more residual porcelain on the metal surface could be observed in the silica-coated group. Therefore, the application of a silica intermediate coating produced using the sol-gel method could significantly improve the bond strength between machined pure titanium and porcelain.


Assuntos
Colagem Dentária , Porcelana Dentária , Dióxido de Silício , Titânio , Análise do Estresse Dentário , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
19.
J Oral Maxillofac Surg ; 74(6): 1255-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26851316

RESUMO

PURPOSE: Reconstruction of maxillary and midfacial defects due to tumor ablation is challenging to conventional operation. The purposes of this study are to evaluate the precise 3-dimensional position of the fibular flap in reconstruction of maxillary defects assisted by virtual surgical planning and to assess the postoperative outcomes compared with conventional surgery. MATERIALS AND METHODS: We retrospectively reviewed 18 consecutive patients who underwent maxillary reconstruction with a vascularized fibular flap assisted by virtual surgical planning after maxillary or midfacial tumor ablation. Conventional surgery was performed in another 15 patients. Proplan CMF surgical planning (Materialise, Leuven, Belgium) was performed preoperatively in the virtual planning group. Fibular flaps were harvested and underwent osteotomy assisted by prefabricated cutting guides, and the maxilla and midface were resected and reconstructed assisted by the prefabricated cutting guides and templates in the virtual planning group. The operative time and fibular flap positions were evaluated in the 2 groups. Postoperative fibular positions of the maxillary reconstruction were compared with virtual plans in the virtual planning group. The postoperative facial appearance and occlusal function were assessed. RESULTS: The operations were performed successfully without complications. The ischemia time and total operative time were shorter in the virtual planning group than those in the conventional surgery group (P < .05). High precision of the cutting guides and templates was found on both the fibula and maxilla in the virtual planning group. The positions of the fibular flaps, including the vertical and horizontal positions, were more accurate in the virtual planning group than those in the conventional surgery group (P < .05). Bone-to-bone contact between the maxilla and fibular segments was more precise in the virtual planning group (P < .05). Postoperative computed tomography scans showed excellent contour of the fibular flap segments in accordance with the virtual plans in the virtual planning group. All patients were alive with no evidence of disease. Functional mandibular range of motion, good occlusion, and an ideal facial appearance were observed in the virtual planning group. CONCLUSIONS: Virtual surgical planning appears to achieve precise maxillary reconstruction with a vascularized fibular flap after tumor ablation, as well as an ideal facial appearance and function after dental rehabilitation. The use of prefabricated cutting guides and plates eases fibular flap molding and placement, minimizes operating time, and improves clinical outcomes.


Assuntos
Fíbula/transplante , Reconstrução Mandibular/métodos , Maxila/cirurgia , Neoplasias Maxilares/cirurgia , Cirurgia Assistida por Computador/métodos , Retalhos Cirúrgicos , Técnicas de Ablação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
20.
J Mol Cell Cardiol ; 79: 92-103, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446184

RESUMO

BACKGROUND: α-Enolase is a glycolytic enzyme with "second jobs" beyond its catalytic activity. However, its possible contribution to cardiac dysfunction remains to be determined. The present study aimed to investigate the role of α-enolase in doxorubicin (Dox)-induced cardiomyopathy as well as the underlying mechanisms. EXPERIMENTAL APPROACHES: The expression of α-enolase was detected in rat hearts and primary cultured rat cardiomyocytes with or without Dox administration. An adenovirus carrying short-hairpin interfering RNA targeting α-enolase was constructed and transduced specifically into the heart by intramyocardial injection. Heart function, cell apoptosis and mitochondrial function were measured following Dox administration. In addition, by using gain- and loss-of-function approaches to regulate α-enolase expression in primary cultured rat cardiomyocytes, we investigated the role of endogenous, wide type and catalytically inactive mutant α-enolase in cardiomyocyte apoptosis and ATP generation. Furthermore, the involvement of α-enolase in AMPK phosphorylation was also studied. KEY RESULTS: The mRNA and protein expression of cardiac α-enolase was significantly upregulated by Dox. Genetic silencing of α-enolase in rat hearts and cultured cardiomyocytes attenuated Dox-induced apoptosis and mitochondrial dysfunction. In contrast, overexpression of wide-type or catalytically inactive α-enolase in cardiomyocytes mimicked the detrimental role of Dox in inducing apoptosis and ATP reduction. AMPK dephosphorylation was further demonstrated to be involved in the proapoptotic and ATP-depriving effects of α-enolase. CONCLUSION: Our findings provided the evidence that α-enolase has a catalytically independent role in inducing cardiomyocyte apoptosis and mitochondrial dysfunction, which could be at least partially contributed to the inhibition of AMPK phosphorylation.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/enzimologia , Fosfopiruvato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenoviridae/metabolismo , Adenilato Quinase/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA