Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 151(5): 951-63, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178118

RESUMO

The inactive X chromosome's (Xi) physical territory is microscopically devoid of transcriptional hallmarks and enriched in silencing-associated modifications. How these microscopic signatures relate to specific Xi sequences is unknown. Therefore, we profiled Xi gene expression and chromatin states at high resolution via allele-specific sequencing in mouse trophoblast stem cells. Most notably, X-inactivated transcription start sites harbored distinct epigenetic signatures relative to surrounding Xi DNA. These sites displayed H3-lysine27-trimethylation enrichment and DNaseI hypersensitivity, similar to autosomal Polycomb targets, yet excluded Pol II and other transcriptional hallmarks, similar to nontranscribed genes. CTCF bound X-inactivated and escaping genes, irrespective of measured chromatin boundaries. Escape from X inactivation occurred within, and X inactivation was maintained exterior to, the area encompassed by Xist in cells subject to imprinted and random X inactivation. The data support a model whereby inactivation of specific regulatory elements, rather than a simple chromosome-wide separation from transcription machinery, governs gene silencing over the Xi.


Assuntos
Inativação Gênica , Elementos Reguladores de Transcrição , Inativação do Cromossomo X , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Desoxirribonuclease I/metabolismo , Código das Histonas , Elementos Nucleotídeos Longos e Dispersos , Camundongos , Proteínas do Grupo Polycomb/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia
2.
Genes Dev ; 29(13): 1377-92, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159997

RESUMO

Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica/genética , Crescimento e Desenvolvimento/genética , Histonas/metabolismo , Animais , Morte Celular/genética , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Fertilidade/genética , Genes Letais/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Camundongos , Mutação
3.
Genes Dev ; 28(18): 2056-69, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25228648

RESUMO

Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Complexo Repressor Polycomb 2/metabolismo , Espermatócitos/citologia , Transcriptoma/genética , Animais , Cromossomos/genética , Cromossomos/metabolismo , Inativação Gênica , Infertilidade Masculina/genética , Laminas/genética , Masculino , Meiose/genética , Camundongos , Complexo Repressor Polycomb 2/genética
4.
Dev Biol ; 424(2): 198-207, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254491

RESUMO

We previously reported the requirement of Polycomb Repressive Complex 2 (PRC2) for spermatogenesis through transcriptional repression of somatic genes and meiosis-specific genes. To characterize how PRC2's two methyltransferase subunits, EZH1 and EZH2, regulate histone H3 lysine 27 (H3K27) methylation during germ cell development, we generated mouse models with a germline ablation of EZH1 and/or EHZ2. Only the combined loss of EZH1 and EZH2 caused a depletion of global H3K27me3 marks and meiotic arrest in spermatocytes. Genome-wide analysis of H3K27me3 in spermatogenic cells revealed that a noncanonical EZH1-PRC2 could establish and maintain this histone mark on somatic genes and certain meiotic genes. Consistent with it having active enhancers in testis, Ezh1 was not only abundant in highly differentiated spermatocytes but also in actively proliferating progenitor and stem germ cells. Taken together, our findings suggest that the expression level of Ezh1 determines the restoration of H3K27 methylation in the absence of the canonical EZH2-PRC2.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Animais , Sequência de Bases , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fertilidade , Deleção de Genes , Genoma , Histonas/metabolismo , Lisina/metabolismo , Masculino , Metilação , Camundongos Knockout , Mitose , Modelos Biológicos , Testículo/metabolismo
5.
PLoS Genet ; 10(8): e1004507, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101834

RESUMO

The early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3K27 demethylases. We have taken a mouse genetics approach to remove activity of both H3K27 demethylases of the Kdm6 gene family, Utx (Kdm6a, X-linked gene) and Jmjd3 (Kdm6b, autosomal gene). Male embryos null for active H3K27 demethylation by the Kdm6 gene family survive to term. At mid-gestation, embryos demonstrate proper patterning and activation of Hox genes. These male embryos retain the Y-chromosome UTX homolog, UTY, which cannot demethylate H3K27me3 due to mutations in catalytic site of the Jumonji-C domain. Embryonic stem (ES) cells lacking all enzymatic KDM6 demethylation exhibit a typical decrease in global H3K27me3 levels with differentiation. Retinoic acid differentiations of these ES cells demonstrate loss of H3K27me3 and gain of H3K4me3 to Hox promoters and other transcription factors, and induce expression similar to control cells. A small subset of genes exhibit decreased expression associated with reduction of promoter H3K4me3 and some low-level accumulation of H3K27me3. Finally, Utx and Jmjd3 mutant mouse embryonic fibroblasts (MEFs) demonstrate dramatic loss of H3K27me3 from promoters of several Hox genes and transcription factors. Our results indicate that early embryonic H3K27me3 repression can be alleviated in the absence of active demethylation by the Kdm6 gene family.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Histona Desmetilases/genética , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Cromatina/genética , Embrião de Mamíferos , Células-Tronco Embrionárias , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases/biossíntese , Histona Desmetilases com o Domínio Jumonji/biossíntese , Masculino , Camundongos , Mutação , Gravidez
6.
Nucleic Acids Res ; 42(8): e68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24561615

RESUMO

The ability to correlate chromosome conformation and gene expression gives a great deal of information regarding the strategies used by a cell to properly regulate gene activity. 4C-Seq is a relatively new and increasingly popular technology where the set of genomic interactions generated by a single point in the genome can be determined. 4C-Seq experiments generate large, complicated data sets and it is imperative that signal is properly distinguished from noise. Currently, there are a limited number of methods for analyzing 4C-Seq data. Here, we present a new method, fourSig, which in addition to being precise and simple to use also includes a new feature that prioritizes detected interactions. Our results demonstrate the efficacy of fourSig with previously published and novel 4C-Seq data sets and show that our significance prioritization correlates with the ability to reproducibly detect interactions among replicates.


Assuntos
Cromossomos/química , Software , Alelos , Animais , Interpretação Estatística de Dados , Expressão Gênica , Loci Gênicos , Genômica/métodos , Hibridização in Situ Fluorescente , Camundongos , Conformação de Ácido Nucleico , Globinas beta/genética
7.
Development ; 139(12): 2130-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22573614

RESUMO

Proper regulation of X-linked gene expression, termed dosage compensation, is required for the normal development of mammalian embryos. Through the process of X chromosome inactivation (XCI), somatic cells of mammalian females inactivate one of their two X chromosomes in order to balance X-linked gene dosage with their male counterparts. The process of XCI is dependent upon the long non-coding RNA Xist, which is expressed from and coats the inactivated X chromosome (Xi) in cis. During mouse embryogenesis, imprinted XCI inactivates the paternally inherited X chromosome (Xp) within the extra-embryonic lineages. Consequently, females harboring a paternally derived Xist mutation (X/X(Xist-)) die owing to failure of imprinted XCI and, presumably, poor trophoblast development. Here, we investigate the consequence of two active X chromosomes in the extra-embryonic ectoderm (ExE) of X/X(Xist-) female embryos. At embryonic day (E) 6.5, we find that the X/X(Xist-) ExE lacks the transcriptional regulator CDX2, a factor required to maintain the ExE in a progenitor state. In addition, spongiotrophoblast progenitors are not maintained. Surprisingly, we observe evidence of an Xi in a subpopulation of X/X(Xist-) ExE cells. We demonstrate further that trophectodermal stem cells derived from X/X(Xist-) embryos completely reverse normal imprinted XCI patterns. Taken together, our data suggest that, much like in the cells of the epiblast, the initial imprint that establishes imprinted XCI is probably erased in ExE cells. Conversely, unlike the epiblast, in which XCI is not required for progenitor cell maintenance, we demonstrate that dosage compensation is indispensable for the maintenance of trophoblast progenitors.


Assuntos
Mecanismo Genético de Compensação de Dose , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Membranas Extraembrionárias/citologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Fator de Transcrição CDX2 , Contagem de Células , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Impressão Genômica/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , RNA Longo não Codificante , RNA não Traduzido , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Cromossomo X/genética , Inativação do Cromossomo X/genética
8.
PLoS Genet ; 8(1): e1002468, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275877

RESUMO

Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals.


Assuntos
Nucléolo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , DNA Ribossômico/genética , Heterocromatina/genética , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Linhagem Celular , Nucléolo Celular/metabolismo , Dactinomicina/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Nucleossomos/genética , Nucleossomos/metabolismo , Pseudogenes/genética , RNA Polimerase I/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes/genética
9.
Nat Cell Biol ; 8(2): 195-202, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415857

RESUMO

The Polycomb group (PcG) encodes an evolutionarily conserved set of chromatin-modifying proteins that are thought to maintain cellular transcriptional memory by stably silencing gene expression. In mouse embryos that are mutated for the PcG protein Eed, X-chromosome inactivation (XCI) is not stably maintained in extra-embryonic tissues. Eed is a component of a histone-methyltransferase complex that is thought to contribute to stable silencing in undifferentiated cells due to its enrichment on the inactive X-chromosome in cells of the early mouse embryo and in stem cells of the extra-embryonic trophectoderm lineage. Here, we demonstrate that the inactive X-chromosome in Eed(-/-) trophoblast stem cells and in cells of the trophectoderm-derived extra-embryonic ectoderm in Eed(-/-) embryos remain transcriptionally silent, despite lacking the PcG-mediated histone modifications that normally characterize the facultative heterochromatin of the inactive X-chromosome. Whereas undifferentiated Eed(-/-) trophoblast stem cells maintained XCI, reactivation of the inactive X-chromosome occurred when these cells were differentiated. These results indicate that PcG complexes are not necessary to maintain transcriptional silencing of the inactive X-chromosome in undifferentiated stem cells. Instead, PcG proteins seem to propagate cellular memory by preventing transcriptional activation of facultative heterochromatin during differentiation.


Assuntos
Diferenciação Celular/genética , Proteínas Repressoras/fisiologia , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Fator de Transcrição CDX2 , Linhagem Celular , Células Cultivadas , Ectoderma/metabolismo , Embrião de Mamíferos/metabolismo , Endoderma/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Metilação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas/metabolismo , RNA Longo não Codificante , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/metabolismo , Trofoblastos/metabolismo , Cromossomo X/metabolismo
10.
G3 (Bethesda) ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35416979

RESUMO

RBBP4 is a subunit of the chromatin remodeling complexes known as Polycomb repressive complex 2 and histone deacetylase 1/2-containing complexes. These complexes are responsible for histone H3 lysine 27 methylation and deacetylation, respectively. How RBBP4 modulates the functions of these complexes remains largely unknown. We generated viable Rbbp4 mutant alleles in mouse embryonic stem cell lines by CRISPR-Cas9. The mutations disrupted Polycomb repressive complex 2 assembly and H3K27me3 establishment on target chromatin and altered histone H3 lysine 27 acetylation genome wide. Moreover, Rbbp4 mutant cells underwent dramatic changes in transcriptional profiles closely tied to the deregulation of H3K27ac. The alteration of H3K27ac due to RBBP4 dysfunction occurred on numerous cis-regulatory elements, especially putative enhancers. These data suggest that RBBP4 plays a central role in regulating histone H3 lysine 27 methylation and acetylation to modulate gene expression.


Assuntos
Histonas , Lisina , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Acetilação , Animais , Expressão Gênica , Genômica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética
11.
J Biol Chem ; 285(26): 19747-56, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20427282

RESUMO

Members of the transforming growth factor-beta superfamily play essential roles in both the pluripotency and differentiation of embryonic stem (ES) cells. Although bone morphogenic proteins (BMPs) maintain pluripotency of undifferentiated mouse ES cells, the role of autocrine Nodal signaling is less clear. Pharmacological, molecular, and genetic methods were used to further understand the roles and potential interactions of these pathways. Treatment of undifferentiated ES cells with SB431542, a pharmacological inhibitor of Smad2 signaling, resulted in a rapid reduction of phosphorylated Smad2 and altered the expression of several putative downstream targets. Unexpectedly, inhibition of the Nodal signaling pathway resulted in enhanced BMP signaling, as assessed by Smad1/5 phosphorylation. SB431542-treated cells also demonstrated significant induction of the Id genes, which are known direct targets of BMP signaling and important factors in ES cell pluripotency. Inhibition of BMP signaling decreased the SB431542-mediated phosphorylation of Smad1/5 and induction of Id genes, suggesting that BMP signaling is necessary for some Smad2-mediated activity. Because Smad7, a known inhibitory factor to both Nodal and BMP signaling, was down-regulated following inhibition of Nodal-Smad2 signaling, the contribution of Smad7 to the cross-talk between the transforming growth factor-beta pathways in ES cells was examined. Biochemical manipulation of Smad7 expression, through shRNA knockdown or inducible gene expression, significantly reduced the SB431542-mediated phosphorylation of Smad1/5 and induction of the Id genes. We conclude that autocrine Nodal signaling in undifferentiated mouse ES cells modulates the vital pluripotency pathway of BMP signaling.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Células-Tronco Embrionárias/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais , Animais , Comunicação Autócrina , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dioxóis/farmacologia , Células-Tronco Embrionárias/citologia , Feminino , Expressão Gênica/efeitos dos fármacos , Immunoblotting , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Nodal/genética , Fosforilação/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo
12.
J Clin Invest ; 116(10): 2653-62, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16981008

RESUMO

Adrenomedullin (AM) is a multifunctional peptide vasodilator that is essential for life. Plasma AM expression dramatically increases during pregnancy, and alterations in its levels are associated with complications of pregnancy including fetal growth restriction (FGR) and preeclampsia. Using AM+/- female mice with genetically reduced AM expression, we demonstrate that fetal growth and placental development are seriously compromised by this modest decrease in expression. AM+/- female mice had reduced fertility characterized by FGR. The incidence of FGR was also influenced by the genotype of the embryo, since AM-/- embryos were more often affected than either AM+/- or AM+/+ embryos. We demonstrate that fetal trophoblast cells and the maternal uterine wall have coordinated and localized increases in AM gene expression at the time of implantation. Placentas from growth-restricted embryos showed defects in trophoblast cell invasion, similar to defects that underlie human preeclampsia and placenta accreta. Our data provide a genetic in vivo model to implicate both maternal and, to a lesser extent, embryonic levels of AM in the processes of implantation, placentation, and subsequent fetal growth. This study provides the first genetic evidence to our knowledge to suggest that a modest reduction in human AM expression during pregnancy may have an unfavorable impact on reproduction.


Assuntos
Adrenomedulina/genética , Fertilidade/genética , Desenvolvimento Fetal/genética , Placentação/genética , Adrenomedulina/metabolismo , Animais , Decídua/metabolismo , Implantação do Embrião/genética , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Feminino , Morte Fetal/genética , Retardo do Crescimento Fetal/genética , Expressão Gênica/genética , Genótipo , Heterozigoto , Tamanho da Ninhada de Vivíparos/genética , Camundongos , Camundongos Knockout , Placenta/patologia , Gravidez , Fatores Sexuais , Trofoblastos/metabolismo , Útero/metabolismo
13.
Stem Cells ; 26(6): 1496-505, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18403752

RESUMO

Polycomb repressive complex 2 (PRC2) methylates histone H3 tails at lysine 27 and is essential for embryonic development. The three core components of PRC2, Eed, Ezh2, and Suz12, are also highly expressed in embryonic stem (ES) cells, where they are postulated to repress developmental regulators and thereby prevent differentiation to maintain the pluripotent state. We performed gene expression and chimera analyses on low- and high-passage Eed(null) ES cells to determine whether PRC2 is required for the maintenance of pluripotency. We report here that although developmental regulators are overexpressed in Eed(null) ES cells, both low- and high-passage cells are functionally pluripotent. We hypothesize that they are pluripotent because they maintain expression of critical pluripotency factors. Given that EED is required for stability of EZH2, the catalytic subunit of the complex, these data suggest that PRC2 is not necessary for the maintenance of the pluripotent state in ES cells. We propose a positive-only model of embryonic stem cell maintenance, where positive regulation of pluripotency factors is sufficient to mediate stem cell pluripotency. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/genética , Animais , Quimera/genética , Imuno-Histoquímica , Histona Desmetilases com o Domínio Jumonji , Lisina/metabolismo , Metilação , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases N-Desmetilantes/genética , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Curr Biol ; 15(10): 942-7, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15916951

RESUMO

PcG proteins mediate heritable transcriptional silencing by generating and recognizing covalent histone modifications. One conserved PcG complex, PRC2, is composed of several proteins including the histone methyltransferase (HMTase) Ezh2, the WD-repeat protein Eed, and the Zn-finger protein Suz12. Ezh2 methylates histone H3 on lysine 27 (H3K27), which serves as an epigenetic mark mediating silencing. H3K27 can be mono-, di-, or trimethylated (1mH3K27, 2mH3K27, and 3mH3K27, respectively). Hence, either PRC2 must be regulated so as to add one methyl group to certain nucleosomes but two or three to others, or distinct complexes must be responsible for 1m-, 2m-, and 3mH3K27. Consistent with the latter possibility, 2mH3K27 and 3mH3K27, but not 1mH3K27, are absent in Suz12-/- embryos, which lack both Suz12 and Ezh2 protein. Mammalian proteins required for 1mH3K27 have not been identified. Here, we demonstrate that unlike Suz12 and Ezh2, Eed is required not only for 2m- and 3mH3K27 but also global 1mH3K27. These results provide a functionally important distinction between PRC2 complex components and implicate Eed in PRC2-independent histone methylation.


Assuntos
Epigênese Genética/fisiologia , Inativação Gênica/fisiologia , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Northern Blotting , Western Blotting , Clonagem Molecular , Embrião de Mamíferos/citologia , Imunofluorescência , Vetores Genéticos , Lisina , Metilação , Camundongos , Complexo Repressor Polycomb 2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
15.
Epigenetics Chromatin ; 11(1): 71, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522506

RESUMO

BACKGROUND: Polycomb repressive complex 2 (PRC2) is responsible for establishing and maintaining histone H3K27 methylation during cell differentiation and proliferation. H3K27 can be mono-, di-, or trimethylated, resulting in differential gene regulation. However, it remains unknown how PRC2 specifies the degree and biological effects of H3K27 methylation within a given cellular context. One way to determine PRC2 specificity may be through alternative splicing of Ezh2, PRC2's catalytic subunit, during cell differentiation and tissue maturation. RESULTS: We fully characterized the alternative splicing of Ezh2 in somatic cells and male germ cells and found that Ezh's exon 14 was differentially regulated during mitosis and meiosis. The Ezh2 isoform containing exon 14 (ex14-Ezh2) is upregulated during cell cycle progression, consistent with a role in maintaining H3K27 methylation during chromatin replication. In contrast, the isoform lacking exon 14 (ex14D-Ezh2) was almost exclusively present in spermatocytes when new H3K27me2 is established during meiotic differentiation. Moreover, Ezh2's transcript is normally controlled by E2F transcription activators, but in spermatocytes, Ezh2's transcription is controlled by the meiotic regulator MYBL1. Compared to ex14-EZH2, ex14D-EZH2 has a diminished efficiency for catalyzing H3K27me3 and promotes embryonic stem cell differentiation. CONCLUSIONS: Ezh2's expression is regulated at transcriptional and post-transcriptional levels in a cellular context-dependent manner. EZH2 variants determine functional specificity of PRC2 in histone methylation during cell proliferation and differentiation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Processamento Alternativo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Variação Genética , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional , Espermatócitos/citologia , Espermatócitos/metabolismo
16.
Mol Biol Cell ; 13(10): 3588-600, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12388759

RESUMO

Sorting nexins 1 (Snx1) and 2 (Snx2) are homologues of the yeast gene VPS5 that is required for proper endosome-to-Golgi trafficking. The prevailing thought is that Vps5p is a component of a retrograde trafficking complex called the retromer. Genetic and biochemical evidence suggest mammals may have similar complexes, but their biological role is unknown. Furthermore, if SNX1 and SNX2 belong to such complexes, it is not known whether they act together or separately. Herein, we show that mice lacking SNX1 or SNX2 are viable and fertile, whereas embryos deficient in both proteins arrest at midgestation. These results demonstrate that SNX1 and SNX2 have a highly redundant and necessary function in the mouse. The phenotype of Snx1(-/-);Snx2(-/-) embryos is very similar to that of embryos lacking another retromer homologue, Hbeta58. This finding suggests that SNX1/SNX2 and Hbeta58 function in the same genetic pathway, providing additional evidence for the existence of mammalian complexes that are structurally similar to the yeast retromer. Furthermore, the viability of Snx1(-/-) and Snx2(-/-) mice demonstrates that it is not necessary for SNX1 and SNX2 to act together. Electron microscopy indicates morphological alterations of apical intracellular compartments in the Snx1(-/-);Snx2(-/-) yolk-sac visceral endoderm, suggesting SNX1 and SNX2 may be required for proper cellular trafficking. However, tetraploid aggregation experiments suggest that yolk sac defects cannot fully account for Snx1(-/-); Snx2(-/-) embryonic lethality. Furthermore, endocytosis of transferrin and low-density lipoprotein is unaffected in mutant primary embryonic fibroblasts, indicating that SNX1 and SNX2 are not essential for endocytosis in all cells. Although the two proteins demonstrate functional redundancy, Snx1(+/-);Snx2(-/-) mice display abnormalities not observed in Snx1(-/-);Snx2(+/-) mice, revealing that SNX1 and SNX2, or their genetic regulation, are not equivalent. Significantly, these studies represent the first mutations in the mammalian sorting nexin gene family and indicate that sorting nexins perform essential functions in mammals.


Assuntos
Proteínas de Transporte/fisiologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário e Fetal , Proteínas de Transporte Vesicular , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Embrião de Mamíferos/anatomia & histologia , Endocitose/fisiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Viabilidade Fetal , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcação de Genes , Substâncias Macromoleculares , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Morfogênese , Fenótipo , Gravidez , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/fisiologia , Saco Vitelino/metabolismo , Saco Vitelino/ultraestrutura
17.
G3 (Bethesda) ; 5(5): 751-9, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25711832

RESUMO

Several hundred mammalian genes are expressed preferentially from one parental allele as the result of a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines, which are ex vivo derivatives of a progenitor population that gives rise to the placental tissue of the mouse. We found evidence of imprinted expression for 48 genes, 31 of which had been described previously as imprinted and 17 of which we suggest as candidate imprinted genes. An equal number of maternally and paternally biased genes were detected. On average, candidate imprinted genes were more lowly expressed and had weaker parent-of-origin biases than known imprinted genes. Several known and candidate imprinted genes showed variability in parent-of-origin expression bias between the six trophoblast stem cell lines. Sixteen of the 48 known and candidate imprinted genes were previously or newly annotated noncoding RNAs and six encoded for a total of 60 annotated microRNAs. Pyrosequencing across our panel of trophoblast stem cell lines returned levels of imprinted expression that were concordant with RNA-Seq measurements for all eight genes examined. Our results solidify trophoblast stem cells as a cell culture-based experimental model to study genomic imprinting, and provide a quantitative foundation upon which to delineate mechanisms by which the process is maintained in the mouse.


Assuntos
Expressão Gênica , Impressão Genômica , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Alelos , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , MicroRNAs , RNA não Traduzido/genética , Reprodutibilidade dos Testes
18.
Nat Commun ; 6: 6118, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25625625

RESUMO

Ovarian clear-cell carcinoma (OCCC) is an aggressive form of ovarian cancer with high ARID1A mutation rates. Here we present a mutant mouse model of OCCC. We find that ARID1A inactivation is not sufficient for tumour formation, but requires concurrent activation of the phosphoinositide 3-kinase catalytic subunit, PIK3CA. Remarkably, the mice develop highly penetrant tumours with OCCC-like histopathology, culminating in haemorrhagic ascites and a median survival period of 7.5 weeks. Therapeutic treatment with the pan-PI3K inhibitor, BKM120, prolongs mouse survival by inhibiting the tumour cell growth. Cross-species gene expression comparisons support a role for IL-6 inflammatory cytokine signalling in OCCC pathogenesis. We further show that ARID1A and PIK3CA mutations cooperate to promote tumour growth through sustained IL-6 overproduction. Our findings establish an epistatic relationship between SWI/SNF chromatin remodelling and PI3K pathway mutations in OCCC and demonstrate that these pathways converge on pro-tumorigenic cytokine signalling. We propose that ARID1A protects against inflammation-driven tumorigenesis.


Assuntos
Adenocarcinoma de Células Claras/genética , Carcinogênese/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Inflamação/metabolismo , Mutação/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/genética , Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/patologia , Alelos , Animais , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Genes Supressores de Tumor , Haploinsuficiência/efeitos dos fármacos , Inflamação/patologia , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Fatores de Transcrição
19.
Genetics ; 197(2): 715-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24653000

RESUMO

X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes.


Assuntos
Células-Tronco Embrionárias/citologia , Trofoblastos/citologia , Inativação do Cromossomo X , Alelos , Animais , Elementos Facilitadores Genéticos , Feminino , Impressão Genômica , Camundongos , Cromossomo X
20.
G3 (Bethesda) ; 2(12): 1521-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275875

RESUMO

The organization of the genome within the mammalian nucleus is nonrandom, with physiologic processes often concentrated in specific three-dimensional domains. This organization may be functionally related to gene regulation and, as such, may play a role in normal development and human disease processes. However, the mechanisms that participate in nuclear organization are poorly understood. Here, we present data characterizing localization of the imprinted Kcnq1 alleles. We show that nucleolar association of the paternal allele (1) is stimulated during the differentiation of trophoblast stem cells, (ii) is dependent upon the Kcnq1ot1 noncoding RNA, (3) does not require polycomb repressive complex 2, and (4) is not sufficient to preclude transcription of imprinted genes. Although nucleolar positioning has been proposed as a mechanism to related to gene silencing, we find that silencing and perinucleolar localization through the Kcnq1ot1 noncoding RNA are separable events.


Assuntos
Nucléolo Celular/metabolismo , Canal de Potássio KCNQ1/genética , Alelos , Animais , Diferenciação Celular , Células Cultivadas , Expressão Gênica/genética , Inativação Gênica , Loci Gênicos , Canal de Potássio KCNQ1/análise , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA não Traduzido/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA