Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chromosoma ; 133(2): 117-134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165460

RESUMO

Chromosomes with two centromeres provide a unique opportunity to study chromosome breakage and DNA repair using completely endogenous cellular machinery. Using a conditional transcriptional promoter to control the second centromere, we are able to activate the dicentric chromosome and follow the appearance of DNA repair products. We find that the rate of appearance of DNA repair products resulting from homology-based mechanisms exceeds the expected rate based on their limited centromere homology (340 bp) and distance from one another (up to 46.3 kb). In order to identify whether DNA breaks originate in the centromere, we introduced 12 single-nucleotide polymorphisms (SNPs) into one of the centromeres. Analysis of the distribution of SNPs in the recombinant centromeres reveals that recombination was initiated with about equal frequency within the conserved centromere DNA elements CDEII and CDEIII of the two centromeres. The conversion tracts range from about 50 bp to the full length of the homology between the two centromeres (340 bp). Breakage and repair events within and between the centromeres can account for the efficiency and distribution of DNA repair products. We propose that in addition to providing a site for kinetochore assembly, the centromere may be a point of stress relief in the face of genomic perturbations.


Assuntos
Centrômero , Quebra Cromossômica , Reparo do DNA , Centrômero/genética , Animais , Polimorfismo de Nucleotídeo Único , Humanos
2.
PLoS Genet ; 17(3): e1009442, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735169

RESUMO

DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms.


Assuntos
Centrômero/genética , Cromossomos Fúngicos , Fenótipo , Saccharomycetales/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Fúngicas , Recombinação Homóloga , Saccharomycetales/metabolismo
3.
Anal Chem ; 95(26): 9892-9900, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37336762

RESUMO

We present a chip-based extended nano-Coulter counter (XnCC) that can detect nanoparticles affinity-selected from biological samples with low concentration limit-of-detection that surpasses existing resistive pulse sensors by 2-3 orders of magnitude. The XnCC was engineered to contain 5 in-plane pores each with an effective diameter of 350 nm placed in parallel and can provide high detection efficiency for single particles translocating both hydrodynamically and electrokinetically through these pores. The XnCC was fabricated in cyclic olefin polymer (COP) via nanoinjection molding to allow for high-scale production. The concentration limit-of-detection of the XnCC was 5.5 × 103 particles/mL, which was a 1,100-fold improvement compared to a single in-plane pore device. The application examples of the XnCC included counting affinity selected SARS-CoV-2 viral particles from saliva samples using an aptamer and pillared microchip; the selection/XnCC assay could distinguish the COVID-19(+) saliva samples from those that were COVID-19(-). In the second example, ovarian cancer extracellular vesicles (EVs) were affinity selected using a pillared chip modified with a MUC16 monoclonal antibody. The affinity selection chip coupled with the XnCC was successful in discriminating between patients with high grade serous ovarian cancer and healthy donors using blood plasma as the input sample.


Assuntos
COVID-19 , Vesículas Extracelulares , Nanopartículas , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Vírion
4.
Nucleic Acids Res ; 49(8): 4586-4598, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836082

RESUMO

The nucleolus is the site of ribosome biosynthesis encompassing the ribosomal DNA (rDNA) locus in a phase separated state within the nucleus. In budding yeast, we find the rDNA locus and Cdc14, a protein phosphatase that co-localizes with the rDNA, behave like a condensate formed by polymer-polymer phase separation, while ribonucleoproteins behave like a condensate formed by liquid-liquid phase separation. The compaction of the rDNA and Cdc14's nucleolar distribution are dependent on the concentration of DNA cross-linkers. In contrast, ribonucleoprotein nucleolar distribution is independent of the concentration of DNA cross-linkers and resembles droplets in vivo upon replacement of the endogenous rDNA locus with high-copy plasmids. When ribosomal RNA is transcribed from the plasmids by Pol II, the rDNA-binding proteins and ribonucleoprotein signals are weakly correlated, but upon repression of transcription, ribonucleoproteins form a single, stable droplet that excludes rDNA-binding proteins from its center. Degradation of RNA-DNA hybrid structures, known as R-loops, by overexpression of RNase H1 results in the physical exclusion of the rDNA locus from the nucleolar center. Thus, the rDNA locus is a polymer-polymer phase separated condensate that relies on transcription and physical contact with RNA transcripts to remain encapsulated within the nucleolus.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Nucléolo Celular/metabolismo , DNA Ribossômico/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Estruturas R-Loop , RNA Polimerase I/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Ensaios Clínicos Fase I como Assunto , DNA Ribossômico/genética , Fase G1/efeitos dos fármacos , Fase G1/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Hidroliases/metabolismo , Cinética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Polímeros/química , Polímeros/metabolismo , Proteínas Tirosina Fosfatases/genética , RNA Polimerase I/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Regulação para Cima , Água/química , Água/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(46): 11784-11789, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373818

RESUMO

De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.


Assuntos
Centrômero/fisiologia , Replicação do DNA/fisiologia , Cinetocoros/fisiologia , Proteínas de Ciclo Celular , Centrômero/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Cinetocoros/metabolismo , Fleomicinas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Termodinâmica , Coesinas
6.
PLoS Genet ; 14(3): e1007029, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561844

RESUMO

Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55 and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset.


Assuntos
Anáfase/fisiologia , Proteína Quinase CDC2/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Securina/genética , Securina/metabolismo , Separase/genética , Fuso Acromático/genética , Coesinas
7.
Nucleic Acids Res ; 45(19): 11159-11173, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977453

RESUMO

Regions of highly repetitive DNA, such as those found in the nucleolus, show a self-organization that is marked by spatial segregation and frequent self-interaction. The mechanisms that underlie the sequestration of these sub-domains are largely unknown. Using a stochastic, bead-spring representation of chromatin in budding yeast, we find enrichment of protein-mediated, dynamic chromosomal cross-links recapitulates the segregation, morphology and self-interaction of the nucleolus. Rates and enrichment of dynamic crosslinking have profound consequences on domain morphology. Our model demonstrates the nucleolus is phase separated from other chromatin in the nucleus and predicts that multiple rDNA loci will form a single nucleolus independent of their location within the genome. Fluorescent labeling of budding yeast nucleoli with CDC14-GFP revealed that a split rDNA locus indeed forms a single nucleolus. We propose that nuclear sub-domains, such as the nucleolus, result from phase separations within the nucleus, which are driven by the enrichment of protein-mediated, dynamic chromosomal crosslinks.


Assuntos
Nucléolo Celular/genética , Cromossomos Fúngicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Algoritmos , Nucléolo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Segregação de Cromossomos , Cinética , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Biol Cell ; 33(11): ar97, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704466

RESUMO

A key feature of chromosome segregation is the ability to sense tension between sister kinetochores. DNA between sister kinetochores must be packaged in a way that sustains tension propagation from one kinetochore to its sister, approximately 1 micron away. A molecular bottlebrush consisting of a primary axis populated with a crowded array of side chains provides a means to build tension over length scales considerably larger than the stiffness of the individual elements, that is, DNA polymer. Evidence for the bottlebrush organization of chromatin between sister kinetochores comes from genetic, cell biological, and polymer modeling of the budding yeast centromere. In this study, we have used polymer dynamic simulations of the bottlebrush to recapitulate experimental observations of kinetochore structure. Several aspects of the spatial distribution of kinetochore proteins and their response to perturbation lack a mechanistic understanding. Changes in physical parameters of bottlebrush, DNA stiffness, and DNA loops directly impact the architecture of the inner kinetochore. This study reveals that the bottlebrush is an active participant in building tension between sister kinetochores and proposes a mechanism for chromatin feedback to the kinetochore.


Assuntos
Cinetocoros , Polímeros , Centrômero , Cromatina/metabolismo , Segregação de Cromossomos , DNA/metabolismo , Humanos , Microtúbulos/metabolismo , Polímeros/metabolismo
9.
Curr Biol ; 18(2): 81-90, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18211850

RESUMO

BACKGROUND: Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS: We provide evidence that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA adopts an intramolecular loop, whereas sister-chromatid arms are paired intermolecularly. Visualization of cohesin subunits by fluorescence microscopy revealed a cylindrical structure that encircles the central spindle and spans the distance between sister kinetochores. Kinetochore assembly at the apex of the loop initiates intrastrand loop formation that extends approximately 25 kb (12.5 kb on either side of the centromere). Two centromere loops (one from each sister chromatid) are stretched between the ends of sister-kinetochore microtubules along the spindle axis. At the base of the loop there is a transition to intermolecular sister-chromatid pairing. CONCLUSIONS: The C loop conformation reveals the structural basis for sister-kinetochore clustering in budding yeast and for kinetochore biorientation and thus resolves the paradox of maximal interstrand separation in regions of highest cohesin concentration.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Fenômenos Biomecânicos , Conformação Molecular , Saccharomyces cerevisiae , Fuso Acromático/metabolismo , Coesinas
10.
Mol Biol Cell ; 32(1): 74-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147102

RESUMO

R-loops, the byproduct of DNA-RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA-RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.


Assuntos
Centrômero/metabolismo , Cromatina/química , Instabilidade Cromossômica , Cinetocoros/metabolismo , Estruturas R-Loop , Saccharomycetales/metabolismo , Ciclo Celular , DNA Fúngico/metabolismo , Genoma Fúngico , Histonas/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Saccharomycetales/genética
11.
J Gen Virol ; 90(Pt 10): 2413-2417, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19570953

RESUMO

By using random PCR amplification, shotgun sequencing and sequence similarity searches, we analysed nucleic acids present in cell cultures inoculated with samples from unexplained cases of encephalitis. We identified a divergent human papillomavirus (HPV) sequence originating from a rectal swab. The full genome was amplified by inverse PCR and sequenced. The prototype of the sixth gammapapillomavirus species, HPV116, was not found in the patient's cerebrospinal fluid or respiratory secretions, nor in culture supernatants from other unexplained cases of encephalitis, indicating that its identification in an encephalitis patient was accidental.


Assuntos
Gammapapillomavirus/classificação , Gammapapillomavirus/genética , Animais , Células Cultivadas , Genoma Viral , Humanos , Macaca mulatta , Filogenia , Reação em Cadeia da Polimerase , Viroses/genética
12.
J Clin Microbiol ; 47(10): 3108-13, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19710278

RESUMO

Enteroviruses (EVs) are common seasonal viruses that are associated with a variety of diseases. High-quality monoclonal antibodies (MAbs) are needed to improve the accuracy of EV diagnosis in clinical laboratories. In the present study, the full-length VP1 genes of poliovirus 1 (Polio 1) and coxsackievirus B3 (Cox B3) were cloned, and the encoded proteins were expressed and used as antigens in an attempt to raise broad-spectrum MAbs to EVs. Two pan-EV MAbs were isolated: one raised against Polio 1 VP1 and the other against Cox B3 VP1. The binding sites of both pan-EV MAbs were mapped to an amino acid sequence within a conserved region in the N terminus of Polio 1 VP1 by peptide and competition enzyme-linked immunosorbent assay. Two additional MAbs, an EV70-specific MAb and an EV71/Cox A16-bispecific MAb, developed against EV70 and 71 VP1 proteins, were pooled with the two pan-EV MAbs (pan-EV MAb mix) and tested for their sensitivity and specificity in the staining of various virus-infected cells. The pan-EV MAb mix detected all 40 prototype EVs tested and showed no cross-reactivity to 18 different non-EV human viruses. Compared with two commercially available EV tests, the pan-EV MAb mix exhibited higher specificity than one test and broader spectrum reactivity than the other. Thus, our study demonstrates that full-length Polio 1 VP1 and Cox B3 VP1 can serve as effective antigens for developing a pan-EV MAb and that the pan-EV MAb mix can be used for the laboratory diagnosis of a wide range of EV infections.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Infecções por Enterovirus/diagnóstico , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Proteínas do Capsídeo/genética , Clonagem Molecular , Sequência Conservada/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Expressão Gênica , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Proteínas Estruturais Virais/genética
13.
Mol Biol Cell ; 29(22): 2737-2750, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207827

RESUMO

SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Centrômero/metabolismo , Cromátides/metabolismo , DNA/metabolismo , Metáfase , Modelos Biológicos , Coesinas
14.
Curr Biol ; 14(21): 1962-7, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15530400

RESUMO

With a single microtubule attachment, budding-yeast kinetochores provide an excellent system for understanding the coordinated linkage to dynamic microtubule plus ends for chromosome oscillation and positioning. Fluorescent tagging of kinetochore proteins indicates that, on average, all centromeres are clustered, distinctly separated from their sisters, and positioned equidistant from their respective spindle poles during metaphase. However, individual fluorescent chromosome markers near the centromere transiently reassociate with their sisters and oscillate from one spindle half to the other. To reconcile the apparent disparity between the average centromere position and individual centromere proximal markers, we utilized fluorescence recovery after photobleaching to measure stability of the histone-H3 variant Cse4p/CENP-A. Newly synthesized Cse4p replaces old protein during DNA replication. Once assembled, Cse4-GFP is a physically stable component of centromeres during mitosis. This allowed us to follow centromere dynamics within each spindle half. Kinetochores remain stably attached to dynamic microtubules and exhibit a low incidence of switching orientation or position between the spindle halves. Switching of sister chromatid attachment may be contemporaneous with Cse4p exchange and early kinetochore assembly during S phase; this would promote mixing of chromosome attachment to each spindle pole. Once biorientation is attained, centromeres rarely make excursions beyond their proximal half spindle.


Assuntos
Centrômero/fisiologia , Cinetocoros/metabolismo , Metáfase/fisiologia , Microtúbulos/metabolismo , Modelos Biológicos , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Simulação por Computador , Proteínas de Ligação a DNA/metabolismo , Diagnóstico por Imagem , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Am J Prev Med ; 33(4): 353-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17888862

RESUMO

BACKGROUND: Influenza surveillance is valuable for monitoring trends in influenza-related morbidity and mortality. Using the 2005-2006 influenza season as an example, this paper describes a comprehensive influenza surveillance program used by the California Department of Public Health (CDPH). METHODS: Data collected from patients evaluated for acute respiratory illness in a given week were reported and summarized the following week, including (1) electronic hospital pneumonia and influenza admission and antiviral usage records from Kaiser Permanente, (2) sentinel provider influenza-like illness (ILI) reports, (3) severe pediatric influenza case reports (e.g., children either hospitalized in intensive care or expired), (4) school clinic ILI evaluations, and (5) positive influenza test results from a network of academic, hospital, commercial, and public health laboratories and the state CDPH Viral and Rickettsial Disease Laboratory. RESULTS: Influenza activity in California in the 2005-2006 season was moderate in severity; all clinical and laboratory markers rose and fell consistently. Extensive laboratory characterization identified the predominant circulating virus strain as A/California/7/2004(H3N2), which was a component of the 2005-2006 influenza vaccine; 96% of samples tested showed adamantane resistance. CONCLUSIONS: By using multiple, complementary surveillance methods coupled with a strong laboratory component, the CDPH has developed a simple, flexible, stable, and widely accepted influenza surveillance system that can monitor trends in statewide influenza activity, ascertain the correlation between circulating strains with vaccine strains, and assist with detection of new strain variants. The methods described can serve as a model for influenza surveillance in other states.


Assuntos
Alphainfluenzavirus/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População/métodos , Estações do Ano , California/epidemiologia , Humanos , Influenza Humana/mortalidade , Modelos Organizacionais
16.
Mol Biol Cell ; 28(12): 1701-1711, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28450453

RESUMO

Chromatin exhibits increased mobility on DNA damage, but the biophysical basis for this behavior remains unknown. To explore the mechanisms that drive DNA damage-induced chromosome mobility, we use single-particle tracking of tagged chromosomal loci during interphase in live yeast cells together with polymer models of chromatin chains. Telomeres become mobilized from sites on the nuclear envelope and the pericentromere expands after exposure to DNA-damaging agents. The magnitude of chromatin mobility induced by a single double-strand break requires active microtubule function. These findings reveal how relaxation of external tethers to the nuclear envelope and internal chromatin-chromatin tethers, together with microtubule dynamics, can mobilize the genome in response to DNA damage.


Assuntos
Cromatina/fisiologia , Dano ao DNA , Microtúbulos/metabolismo , Telômero/fisiologia , Cromatina/metabolismo , Citoesqueleto , Reparo do DNA , Regulação da Expressão Gênica , Interfase/genética , Microtúbulos/fisiologia , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo
17.
Mol Biol Cell ; 27(14): 2286-300, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226485

RESUMO

Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Anáfase , Centrômero/enzimologia , Centrômero/metabolismo , Cromátides/metabolismo , Cromatina/metabolismo , Segregação de Cromossomos , Metáfase , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Coesinas , Quinase 1 Polo-Like
18.
J Vector Ecol ; 30(1): 4-10, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16007950

RESUMO

Two forms of tick-borne leukocytotropic rickettsioses have been recognized in California since the mid-1990s: human monocytic ehrlichiosis (HME) caused by Ehrlichia chaffeensis and human granulocytic anaplasmosis (HGA) caused by Anaplasma phagocytophilum. Between 1997 and 1999, two cases of HME and four cases of HGA were diagnosed in residents of southern Humboldt County, California. Environmental followup at case-patients' residences revealed dense populations of Ixodes pacificus ticks, particularly in grassy roadside areas. PCR evidence of A. phagocytophilum was detected in approximately 2.0% of I. pacificus; E. chaffeensis was not detected in any of 625 ticks tested. Serologic antibody to A. phagocytophilum was detected in two of 54 participants in a community epidemiologic study; one of these also had antibody to E. chaffeensis. Over 85% of study participants reported finding a tick on themselves in the preceding 12 mo. Residents of southern Humboldt County are at significant risk of tick bites and should take appropriate prevention measures to avoid infection with rickettsia and other tick-transmitted pathogens.


Assuntos
Anaplasma phagocytophilum/imunologia , Anticorpos Antibacterianos/sangue , Vetores Aracnídeos/microbiologia , Ehrlichia chaffeensis/imunologia , Ehrlichiose/epidemiologia , Ixodes/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anaplasma phagocytophilum/isolamento & purificação , Animais , California/epidemiologia , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vigilância da População , Estudos Soroepidemiológicos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/transmissão
19.
Mol Biol Cell ; 26(11): 2067-79, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833709

RESUMO

Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
J Cell Biol ; 210(4): 553-64, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26283798

RESUMO

The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.


Assuntos
Centrômero/fisiologia , Mitose , Saccharomyces cerevisiae/genética , Centrômero/ultraestrutura , Cromatina/fisiologia , Cromatina/ultraestrutura , DNA Fúngico/fisiologia , DNA Fúngico/ultraestrutura , Microtúbulos/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/citologia , Fuso Acromático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA