RESUMO
INTRODUCTION: Glioblastoma (GBM) is the most common and lethal brain tumor. The current treatment is surgical removal combined with radiotherapy and chemotherapy, Temozolomide (TMZ). However, tumors tend to develop TMZ resistance which leads to therapeutic failure. Ancient ubiquitous protein 1 (AUP1) is a protein associated with lipid metabolism, which is widely expressed on the surface of ER and Lipid droplets, involved in the degradation of misfolded proteins through autophagy. It has recently been described as a prognostic marker in renal tumors. Here, we aim to use sophisticated bioinformatics and experimental validation to characterize the AUP1's role in glioma. MATERIAL AND METHODS: We collected the mRNA, proteomics, and Whole-Exon-Sequencing from The Cancer Genome Atlas (TCGA) for bioinformatics analyses. The analyses included the expression difference, Kaplan-Meier-survival, COX-survival, and correlation to the clinical factors (tumor mutation burden, microsatellite instability, and driven mutant genes). Next, we validated the AUP1 protein expression using immunohistochemical staining on the 78 clinical cases and correlated them with P53 and KI67. Then, we applied GSEA analyses to identify the altered signalings and set functional experiments (including Western Blot, qPCR, BrdU, migration, cell-cycle, and RNAseq) on cell lines when supplemented with small interfering RNA targeting the AUP1 gene (siAUP1) for further validation. We integrated the single-cell sequencing and CIBERSORT analyses at the Chinese Glioma Genome Atlas (CGGA) and Glioma Longitudinal AnalySiS (GLASS) dataset to rationale the role of AUP1 in glioma. RESULTS: Firstly, the AUP1 is a prognostic marker, increased in the tumor component, and correlated with tumor grade in both transcriptomes and protein levels. Secondly, we found higher AUP1 associated with TP53 status, Tumor mutation burden, and increased proliferation. In the function validation, downregulated AUP1 expression merely impacted the U87MG cells' proliferation instead of altering the lipophagy activity. From the single-cell sequencing and CIBERSORT analyses at CGGA and GLASS data, we understood the AUP1 expression was affected by the tumor proliferation, stromal, and inflammation compositions, particularly the myeloid and T cells. In the longitudinal data, the AUP1 significantly dropped in the recurrent IDH wildtype astrocytoma, which might result from increased AUP1-cold components, including oligodendrocytes, endothelial cells, and pericytes. CONCLUSION: According to the literature, AUP1 regulates lipophagy by stabilizing the ubiquitination of lipid droplets. However, we found no direct link between AUP1 suppression and altered autophagy activity in the functional validation. Instead, we noticed AUP1 expression associated with tumor proliferation and inflammatory status, contributed by myeloid cells and T cells. In addition, the TP53 mutations seem to play an important role here and initiate inflamed microenvironments. At the same time, EGFR amplification and Chromosome 7 gain combined 10 loss are associated with increased tumor growth related to AUP1 levels. This study taught us that AUP1 is a poorer predictive biomarker associated with tumor proliferation and could report inflamed status, potentially impacting the clinical application.
RESUMO
Tuberculosis (TB) is a leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb). Although progress has been made in TB control, still about 10 million people worldwide develop TB annually and 1.5 million die of the disease. The rapid emergence of aggressive, drug-resistant strains and latent infections have caused TB to remain a global health challenge. TB treatments are lengthy and their side effects lead to poor patient compliance, which in turn has contributed to the drug resistance and exacerbated the TB epidemic. The relatively low output of newly approved antibiotics has spurred research interest toward alternative antibacterial molecules such as silver nanoparticles (AgNPs). In the present study, we use the natural biopolymer alginate to serve as a stabilizer and/or reductant to green synthesize AgNPs, which improves their biocompatibility and avoids the use of toxic chemicals. The average size of the alginate-capped AgNPs (ALG-AgNPs) was characterized as nanoscale, and the particles were round in shape. Drug susceptibility tests showed that these ALG-AgNPs are effective against both drug-resistant Mtb strains and dormant Mtb. A bacterial cell-wall permeability assay showed that the anti-mycobacterial action of ALG-AgNPs is mediated through an increase in cell-wall permeability. Notably, the anti-mycobacterial potential of ALG-AgNPs was effective in both zebrafish and mouse TB animal models in vivo. These results suggest that ALG-AgNPs could provide a new therapeutic option to overcome the difficulties of current TB treatments.
RESUMO
We examined the efficacy of fucoidan-N-(2-hydroxy-3-trimethylammonium)propylchitosan nanoparticles (FUC-HTCC NPs) as adjuvants for anthrax vaccine adsorbed (AVA). Positively and negatively surface-charged FUC-HTCC NPs were prepared via polyelectrolyte complexation by varying the mass ratio of FUC and HTCC. When cultured with L929 cells or JAWS II dendritic cells, both charged NPs showed high cell viability and low cytotoxicity, observed via MTT assay and lactate dehydrogenase release assay, respectively. In addition, we have monitored excellent NPs uptake efficacy by dendritic cells and observed that combining FUC-HTCC NPs with AVA significantly increases the magnitude of IgG-anti-protective antigen titers in A/J mice compared to that by CpG oligodeoxynucleotides plus AVA or AVA alone, and PA-specific IgG1 and IgG2a analysis confirmed that FUC-HTCC NPs strongly stimulated humoral immunity. Furthermore, FUC-HTCC NPs plus AVA provided a superior survival rate (100%) of A/J mice compared to CpG oligodeoxynucleotides plus AVA (75%) or AVA alone (50%) following anthrax lethal toxin challenge. The findings support FUC-HTCC NPs as a potential adjuvant of AVA for rapid induction of protective immunity.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Antraz/administração & dosagem , Quitosana/administração & dosagem , Nanopartículas/administração & dosagem , Polissacarídeos/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Camundongos , OligodesoxirribonucleotídeosRESUMO
Fucoidan/trimethylchitosan nanoparticles (FUC-TMC-NPs) have the potential to improve the immunostimulating efficiency of anthrax vaccine adsorbed (AVA). FUC-TMC-NPs with positive (+) or negative (-) surface charges were prepared via polyelectrolyte complexation, both charged NP types permitted high viability and presented no cytotoxicity on L929, A549 and JAWS II dendritic cells. Flow cytometry measurements indicated lower (+)-FUC-TMC-NPs internalization levels than (-)-FUC-TMC-NPs, yet produced high levels of pro-inflammatory cytokines IFN-γ, IL12p40, and IL-4. Moreover, fluorescence microscope images proved that both charged NP could deliver drugs into the nucleus. In vivo studies on A/J mice showed that (+)-FUC-TMC-NPs carrying AVA triggered an efficient response with a higher IgG anti-PA antibody titer than AVA with CpG oligodeoxynucleotides, and yielded 100 % protection when challenged with the anthracis spores. Furthermore, PA-specific IgG1 and IgG2a analysis confirmed that (+)-FUC-TMC-NPs strongly stimulated humoral immunity. In conclusion, (+)-FUC-TMC-NP is promising anthrax vaccine adjuvant as an alternative to CpG.
Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas contra Antraz/uso terapêutico , Quitosana/análogos & derivados , Quitosana/uso terapêutico , Nanopartículas/uso terapêutico , Polissacarídeos/uso terapêutico , Células A549 , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/toxicidade , Animais , Antraz/terapia , Vacinas contra Antraz/imunologia , Bacillus anthracis/imunologia , Quitosana/toxicidade , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Nanopartículas/toxicidade , Oligodesoxirribonucleotídeos/uso terapêutico , Polissacarídeos/química , Polissacarídeos/toxicidadeRESUMO
Herein, we describe an improved procedure for the green synthesis of chondroitin sulfate stabilized silver nanoparticles (ChS-AgNPs). Glucose was used as a reducing agent under alkaline conditions to obtain a small particle size (<10â¯nm), and the reduction was complete within one hour at room temperature. The concentration of NaOH affected the reaction rate, formation yield, and particle size of ChS-AgNPs. The formation of AgNPs was confirmed using UV-vis, TEM, XRD, and XPS. ChS-AgNPs showed excellent catalytic activities in the reduction of 4-nitrophenol by NaBH4, and the reaction rate increased linearly with increasing catalyst amounts. The antimicrobial activities of ChS-AgNPs against A. baumannii (including multidrug-resistant strains), E. coli, P. aeruginosa, and S. aureus were evaluated using the broth microdilution method. Finally, from the morphological observations and cell cycle analysis of L929â¯cells, we found that ChS-AgNPs exhibited antimicrobial and biocompatible activities.
Assuntos
Anti-Infecciosos/química , Sulfatos de Condroitina/química , Nanopartículas Metálicas/química , Prata/química , Anti-Infecciosos/farmacologia , Catálise , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells.
Assuntos
Quitosana/análogos & derivados , Ácido Fólico/química , Nanopartículas Metálicas/química , Compostos de Amônio Quaternário/química , Células CACO-2 , Endocitose , Ouro/química , Química Verde/métodos , Células HeLa , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/efeitos adversos , Eletricidade EstáticaRESUMO
Positively and negatively surface-charged nanoparticles (NPs) were prepared with chondroitin sulfate (ChS) and trimethylchitosan (TMC). NP size, surface charge, formation yield, and water content were investigated as a function of weight ratio and concentration. Size and zeta potential were controlled by varying the ChS/TMC mass ratio. FTIR spectra revealed interactions among composite NP constituents. TEM images showed that the NPs were nearly spherical, with an average size of â¼ 300 nm. Encapsulation efficiency increased in positively charged NPs with increases in fluorescein isothiocyanate-bovine serum albumin concentration. Negatively charged NPs had only 10-20% encapsulation efficiency. The release profile, release kinetics and mechanism of positively charged ChS-TMC NPs were studied in vitro. NP cytocompatibility and uptake were verified ex vivo. Both types of NPs were taken up and retained in cells. A549 cells took up more positively charged (49.4%) than negatively charged (35.5%) NPs.
Assuntos
Quitosana/análogos & derivados , Sulfatos de Condroitina/química , Nanocápsulas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanocápsulas/efeitos adversos , Eletricidade EstáticaRESUMO
A facile polyelectrolyte complexation method for the preparation of both positively and negatively surface charged nanoparticles composed of chondroitin sulfate (ChS) and N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan (HTCC) is reported. Production of ChS-HTCC nanoparticles with reverse zeta potential was easily controlled by varying the ChS/HTCC mass ratio. The encapsulation efficiency increased with the increase in initial FITC-BSA concentration in positively charged NPs and reached 75%. However, a maximum of 20% encapsulation efficiency was achieved in the case of negatively charged NPs. In vitro release studies of positively charged ChS-HTCC NPs showed a small burst effect followed by a continued and controlled release. Both charges of ChS-HTCC NPs showed no cytotoxicity in HUVECs. The confocal images showed that ChS-HTCC NPs of both charges can be incorporated and retained by the A549 cells. Flow cytometric analysis data demonstrated that ChS-HTCC NPs of both charges were detected in more than 80% of the A549 cells.