Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 56(5): 2566-2575, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199086

RESUMO

The noncentrosymmetric tungstate oxide, Ce18W10O57, was synthesized for the first time as high-quality single crystals via the molten chloride flux method and structurally characterized by single-crystal X-ray diffraction. The compound is a structural analogue to the previously reported La18W10O57, which crystallizes in the hexagonal space group P6̅2c. The +3 oxidation state of cerium in Ce18W10O57 was achieved via the in situ reduction of Ce(IV) to Ce(III) using Zn metal. The structure consists of both isolated and face-shared WO6 octahedra and, surprisingly, isolated WO6 trigonal prisms. A careful analysis of the packing arrangement in the structure makes it possible to explain the unusual structural architecture of Ce18W10O57, which is described in detail. The temperature-dependent magnetic susceptibility of Ce18W10O57 indicates that the cerium(III) f1 cations do not order magnetically and exhibit simple paramagnetic behavior. The SHG efficiency of Ln18W10O57 (Ln = La, Ce) was measured as a function of particle size, and both compounds were found to be SHG active with efficiency approximately equal to that of α-SiO2.

2.
Inorg Chem ; 55(14): 7167-75, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27367900

RESUMO

A series of six anti-perovskite fluorides of the type [Cu(H2O)4]3(M1-xM'xF6)2 (where M and M' = V, Cr, Mn, Fe as well as M = Fe and M' = V and Cr) was synthesized as high-quality single crystals via a mild hydrothermal route. These materials belong to a class of perovskite-based structures in which the anions and cations of the regular ABX3 perovskite structure have exchanged positions. Two complex anions, MF6(3-) and M'F6(3-), occupy the normal A and B cation positions, while three complex cations, [Cu(H2O)4](2+), occupy the normally anionic X positions. As in the ABX3 compositions, the A and B positions can be occupied by different complex anions, allowing for the preparation of a wide range of compositions. Magnetic property measurements were performed on all six phases, and complex magnetic behavior was observed at low temperatures in the Mn, Fe, and bimetallic Fe/V and Fe/Cr phases.

3.
Inorg Chem ; 55(4): 1821-30, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26835819

RESUMO

A family of lanthanide mixed-valent vanadium(III/IV) oxosilicates Ln4V(5-x)Zn(x)Si4O22 (Ln = La, Ce, Pr, and Nd) was synthesized as high-quality single crystals via a high-temperature molten salt method. An in situ reduction of V(V) to V(III/IV) as well as of Ce(IV) to Ce(III) was achieved utilizing Zn metal as the reducing agent, some of which is incorporated into the crystal structure. Ce4V(4.77)Zn(0.23)Si4O22, to the best of our knowledge, is the first example of a cerium-containing mixed-valent vanadium silicate. The crystal structures were determined by single-crystal X-ray diffraction, and the four isostructural oxosilicates were determined to crystallize in the chevkinite-structure type in the monoclinic space group I2/a. The unit cells of the Ln4V(5-x)Zn(x)Si4O22 (Ln = La, Ce, Pr, and Nd) series are related to the reported C2/m phases Ln4V5Si4O22 (Ln = La, Pr, and Nd) by a doubling of the c-axis and a loss of a mirror plane. The three-dimensional crystal structure consist of two-dimensional rutile-based vanadium oxide and lanthanide oxide layers linked via Si2O7 groups. The temperature dependence of the magnetic susceptibility of these compounds was measured, and only the Nd analogue exhibited a magnetic transition at 5 K; all samples displayed a discontinuity or deviation from linearity at ca. 130-150 K.

4.
Inorg Chem ; 54(4): 2058-66, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25654469

RESUMO

A series of new, complex U(IV) fluorides, namely, Na3MU6F30 (M = Al(3+), Ga(3+), Ti(3+), V(3+), Cr(3+), and Fe(3+)), containing trivalent transition- and main-group metal cations were synthesized via an in situ reduction step of U(VI) to U(IV). Single crystals of the series were grown in high yield under mild hydrothermal conditions and were characterized by single-crystal X-ray diffraction. The reported compounds crystallize in the trigonal space group P3̅c1 and exhibit complex crystal structures with a three-dimensional (3-D) framework composed of corner- and edge-shared UF9 polyhedra. The arrangement of U2F16 dimers forms two types of hexagonal channels, where MF6 polyhedra and sodium atoms are located. The most interesting structural feature is the presence of the 3-D framework that can accommodate various transition-metal ions in low oxidation states, indicating that the framework acts as an excellent host. Trivalent transition metal ions, even reduced Ti(3+) and V(3+), were stabilized by both the rigid framework and by our synthetic conditions. Utilizing ionic radii of transition metal ions, a phase boundary was investigated, suggesting that there exists a size limit for the M site in the crystal structure. The valence state of uranium was studied by U 4f X-ray photoelectron spectroscopy, which confirmed the presence of U(4+). Temperature-dependent magnetic susceptibility measurements yielded effective magnetic moments of 3.50 and 3.35 µB for Na3MU6F30 (M = Al(3+) and Ga(3+)), respectively. For the other compounds, combined effective magnetic moments of 8.93, 9.09, 9.18, and 10.39 µB were obtained for Ti, V, Cr, and Fe members, respectively. In all cases, large negative Weiss constants were observed, which are indicative of the existence of a spin gap in U(4+). Field-dependent magnetic property measurements at 2 K for Na3FeU6F30 demonstrated that U(4+) attains a nonmagnetic singlet ground state at low temperature. Optical and thermal properties were measured and are reported.

5.
Inorg Chem ; 54(3): 876-84, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25372178

RESUMO

Single crystals of NaEu(9)(SiO(4))(6)O(2), Na(1.5)Eu(8.5)(SiO(4))(6)OF, Na(1.64)Gd(8.36)(SiO(4))(6)O(0.72)F(1.28), Gd(9.34)(SiO(4))(6)O(2), Ca(2.6)Eu(7.4)(SiO(4))(6)O(1.4)F(0.6), Ca(4.02)Sm(5.98)(SiO(4))(6)F(2), and K(1.32)Pr(8.68)(SiO(4))(6)O(1.36)F(0.64) and powders of NaEu(9)(SiO(4))(6)O(2), Na(1.5)Eu(8.5)(SiO(4))(6)OF, Eu(9.34)(SiO(4))(6)O(2), and Gd(9.34)(SiO(4))(6)O(2) were synthesized via flux growth in selected alkali-fluoride melts. All of the compounds adopt the apatite structure with space group P6(3)/m. Luminescence and magnetic data were collected on NaEu(9)(SiO(4))(6)O(2), Na(1.5)Eu(8.5)(SiO(4))(6)OF, Eu(9.34)(SiO(4))(6)O(2), and Gd(9.34)(SiO(4))(6)O(2). Luminescent data indicate that changing the cations and anions that surround the lanthanide site does not change the luminescent properties, making apatites versatile structures for optical materials.

6.
Inorg Chem ; 54(14): 6993-9, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26158295

RESUMO

Single crystals of three new alkali-metal manganese uranium oxides, K2MnU3O11, Rb2MnU3O11, and Li3.2Mn1.8U6O22, have been grown from molten chloride fluxes and structurally characterized by single-crystal X-ray diffraction. The first two compounds crystallize in the trigonal space group, R3̅c, in the three-dimensional (3D), natrotantite structure composed of α-U3O8-topological layers connected via MnO6 octahedra. The Li-containing compound crystallizes in the monoclinic space group, Cc, with a related 3D structure, composed of ß-U3O8-topological sheets connected via irregular MnO7 polyhedra. All three compounds exhibit typical uranyl, UO2(2+), coordination environments consisting of either UO7 pentagonal bipyramids or UO6 flattened octahedra. The lattice parameters of the new oxides are K2MnU3O11, a = 6.8280(2) Å, c = 36.8354(17) Å; Rb2MnU3O11, a = 6.8407(2) Å, c = 37.5520(17) Å; and Li3.2Mn1.8U6O22, a = 11.8958(8) Å, b = 10.9639(7) Å, c = 13.3269(8) Å, and ß = 91.442(4)°. The magnetic susceptibilities of the K and Rb phases are discussed.

7.
Inorg Chem ; 54(11): 5495-503, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25954859

RESUMO

A layered quaternary uranium-containing oxide, Cs2Mn3U6O22, was crystallized from a cesium chloride flux. The crystal structure was determined to consist of α-U3O8 topological layers that are separated by alternating cesium and manganese layers. This ordered arrangement creates a separation between manganese layers of 13 Å, leading to complex low-dimensional magnetic properties. The compound crystallizes in a new structure type in the monoclinic space group, C2/m, with a = 6.8730(10) Å, b = 11.7717(17) Å, c = 13.374(2) Å, and ß = 99.673(5)°. The magnetic properties were measured and analyzed by first-principles density functional theory calculations.

8.
Inorg Chem ; 54(8): 4011-20, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25823416

RESUMO

Four new oxovanadium(IV) tartrates, namely, A2[(VO)2(C4H4O6)(C4H2O6)(H2O)2]·(H2O)2, where A = Cs, 1, Rb, 2; K2[(VO)2(C4H2O6)2(H2O)2]·(H2O)2, 3; and Na2[(VO)2(C4H4O6)(C4H2O6)(H2O)7]·(H2O)2, 4, were prepared utilizing a two-step, mild hydrothermal route involving l-(+)-tartaric acid as the reducing agent. All four compounds were structurally characterized by single-crystal and powder X-ray diffraction methods and were found to crystallize in the non-centrosymmetric orthorhombic space groups P212121 for 1, 2, and 4 and C2221 for 3. The temperature dependence of the magnetic susceptibility of these compounds was measured, and 1, 2, and 4 were found to be paramagnetic down to 2 K, while 3 was found to exhibit spin-dimer behavior. Compounds 1, 2, and 3 were found to be second harmonic generation active. All compounds were further characterized by IR and UV-vis spectroscopies.

9.
J Am Chem Soc ; 136(10): 3955-63, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24593283

RESUMO

A family of rare U(IV)-containing quaternary fluorides, Na4MU6F30 (M = Mn(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)), was synthesized in single crystal form via a mild hydrothermal technique utilizing an in situ U(VI) to U(IV) reduction step. The modified hydrothermal route is described, and the conditions to obtain single crystals in high yield are detailed. The crystal structures were determined by single crystal X-ray diffraction. The isostructural fluorides crystallize in a new structure type in the trigonal space group P3̅c1. They exhibit a complex three-dimensional crystal structure consisting of corner- and edge-shared UF9 and MF6 polyhedra. The main building block, a U6F30(6-) group, is arranged to create two distinct hexagonal channels, inside which MF6 octahedra and Na(+) cations are located. The copper-containing member of the series, Na4CuU6F30, is unusual in that the Cu(2+) cation exhibits a rare symmetrical coordination environment consisting of six identical Cu-F bond distances, indicating the lack of the expected Jahn-Teller distortion. Magnetic susceptibility measurements of Na4ZnU6F30 yielded an effective magnetic moment of 3.42 µB for the U(4+) (f(2)) cation in the structure. Measurements of the other members containing magnetic transition-metal cations in addition to U(4+), Na4MU6F30 (M = Mn(2+), Co(2+), Ni(2+), and Cu(2+)) yielded total effective magnetic moments of 10.2, 9.84, 8.87, and 8.52 µB for the Mn-, Co-, Ni-, and Cu-containing materials, respectively. No evidence for long-range magnetic ordering was found down to 2 K. Measurements of the magnetization as a function of applied magnetic field at 2 K for Na4MnU6F30 confirmed that the U(4+) magnetic cation exhibits a nonmagnetic singlet ground state at low temperature. Thermal stability measurements and UV-vis diffuse reflectance spectroscopy are also reported.

10.
Opt Express ; 22(26): 32440-9, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25607206

RESUMO

We devised a novel buried inverse-trapezoidal (BIT) micropattern that can enable light extracting to both front and back sides of the backlight unit (BLU). The proposed BLU comprised of only a single-sheet light-guide plate (LGP) having the BIT micropatterns only on the top surface of the LGP. The proposed BLU shows normal directional light emitting characteristics to both the front and back sides of the LGP and successfully acts as a planer light source for a dual-sided LCD. The proposed BLU has the potential to dramatically reduce the thickness, weight and cost of the dual-sided LCD thanks to its single-sheet nature.


Assuntos
Iluminação/instrumentação , Cristais Líquidos/química , Dispositivos Ópticos , Refratometria/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Cristais Líquidos/efeitos da radiação , Miniaturização
11.
Inorg Chem ; 53(12): 6289-98, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24867234

RESUMO

Single crystals of several ternary alkali uranium fluorides, LiUF5, KU2F9, K7U6F31, RbUF5, RbU2F9, and RbU3F13, have been obtained in a mild hydrothermal process using UO2(CH3CO2)2(H2O)2 as the uranium source. Their crystal structures were determined by single crystal X-ray diffraction. The uranium in the starting reagent was successfully reduced from U(6+) to U(4+) in a dilute hydrofluoric acid environment, aided by the presence of a copper salt. All materials exhibit highly complex crystal structures that range from two-dimensional to three-dimensional. The U(4+) cations are found in high (UF8 and UF9) coordination environments. The magnetic susceptibility measurements yielded effective magnetic moments of 3.01-3.83 µB for the U(4+) cations. The temperature dependent magnetic susceptibility measurements confirmed that the U(4+) cation exhibits a nonmagnetic singlet ground state at low temperatures. No long-range magnetic order was observed for any of the above compositions down to 2 K. Optical and thermal behaviors of the fluorides were also investigated.

12.
Nano Lett ; 13(9): 3978-84, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23899099

RESUMO

Nanowires are being actively explored as promising nanostructured materials for high performance flexible electronics, biochemical sensors, photonic applications, solar cells, and secondary batteries. In particular, ultralong (centimeter-long) nanowires are highly attractive from the perspective of electronic performance, device throughput (or productivity), and the possibility of novel applications. However, most previous works on ultralong nanowires have issues related to limited length, productivity, difficult alignment, and deploying onto the planar substrate complying with well-matured device fabrication technologies. Here, we demonstrate a highly ordered ultralong (up to 20 cm) nanowire array, with a diameter of 50 nm (aspect ratio of up to 4,000,000:1), in an unprecedented large (8 in.) scale (2,000,000 strands on a wafer). We first devised a perfectly connected ultralong nanograting master template on the whole area of an 8 in. substrate using a top-down approach, with a density equivalent to that achieved with e-beam lithography (100 nm). Using this large-area, ultralong, high-density nanograting template, we developed a fast and effective method for fabricating up to 20 cm long nanowire arrays on a plastic substrate, composed of metal, dielectric, oxide, and ferroelectric materials. As a suggestion of practical application, a prototype of a large-area aluminum wire grid polarizer was demonstrated.

13.
Opt Express ; 21(8): 10358-66, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609746

RESUMO

Transparent display is one of the most promising concepts among the next generation information display devices. Nevertheless, conventional transparent displays have two inherent problems: low forward light efficiency due to the light being emitted also in a backward direction; and low legibility due to the visual interruption caused by the light coming from the background. In this work, a cholesteric liquid crystal (Ch-LC) based, actively operational blind panel is combined with transparent organic light-emitting diodes (TR-OLEDs) to recycle the light wasted by backward propagation in transparent displays while blocking the light from behind the display, pursuing both improved forward light efficiency and enhanced image legibility. By tuning the reflectance spectrum of the Ch-LC panel to match the emission spectrum of TR-OLEDs, we achieved luminous efficiency increase by as large as 21% (85%) when the top metal cathode side (the bottom ITO side) of the OLEDs fa'transparent OLED' ces the blind panel. Maximum transmittance of the proposed device reached a high value of 60%, successfully demonstrating a new window-like transparent display concept.


Assuntos
Iluminação/instrumentação , Cristais Líquidos/química , Compostos Orgânicos/química , Semicondutores , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Cristais Líquidos/efeitos da radiação
14.
Inorg Chem ; 52(4): 2199-207, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23374115

RESUMO

A series of new mixed-metal oxalates containing U(4+) and divalent transition metal cations, Na(2)U(2)M(C(2)O(4))(6)(H(2)O)(4) (M = Mn(2+), Fe(2+), Co(2+), and Zn(2+)), were synthesized via a hydrothermal route and structurally characterized by single crystal X-ray diffraction. All of the materials are triclinic, with space group P1. The three-dimensional structure of these isostructural uranates consists of oxalate bridged UO(10) and MO(6) polyhedra. The U(4+) cation is surrounded by five oxalate ligands, while the M(2+) cations are bonded to two oxalate ligands and four water molecules. The magnetic susceptibility data of these mixed metal oxalates were measured as a function of temperature and result in a value of the effective magnetic moment of 3.50 µ(B) for U(4+) cation in the Zn member, while the total effective moment of the Mn(2+), Fe(2+), and Co(2+) members are 6.01, 5.46, and 5.06 µ(B), respectively. For all materials, negative Weiss constants were observed revealing that the materials exhibited local antiferromagnetic interactions. The U(4+) cation exhibits a singlet ground state at low temperature. The materials were further characterized by infrared, UV-vis reflectance spectroscopy, and thermal analysis.

15.
Inorg Chem ; 52(10): 6179-86, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23659551

RESUMO

Cesium vanadate, Cs2V3O8, a member of the fresnoite-type structure, was synthesized via a hydrothermal route and structurally characterized by single-crystal X-ray diffraction. Cs2V3O8 crystallizes in a noncentrosymmetric polar space group, P4bm, with crystal data of a = 8.9448(4) Å, c = 6.0032(3) Å, V = 480.31(4) Å(3), and Z = 2. The material exhibits a two-dimensional layered crystal structure consisting of corner-shared V(5+)O4 and V(4+)O5 polyhedra. The layers are separated by the cesium cations. The alignment of the individual polyhedra results in a macroscopic polarity for Cs2V3O8. Frequency-dependent polarization measurements indicate that the material is not ferroelectric. A pyroelectric coefficient of -2.0 µC m(-2) K(-1) was obtained from pyroelectric measurements taken as a function of the temperature. The magnetic susceptibility data were measured as a function of the temperature and yielded an effective magnetic moment of 1.78 µB for the V(4+) cation. Short-range magnetic ordering was observed around 7 K. The susceptibility data were fit to the Heisenberg square-lattice model supporting that the short-range magnetic interactions are antiferromagnetic and two-dimensional. IR and thermal properties were also characterized.

16.
Inorg Chem ; 52(15): 8303-5, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23834284

RESUMO

A new noncentrosymmetric U(4+)-containing fluoride, U3F12(H2O), has been synthesized via a mild hydrothermal route and its crystal structure determined by single-crystal X-ray diffraction. The material exhibits a complex three-dimensional structure that is based on [U6F33(H2O)2)](9-) hexanuclear building units consisting of corner- and edge-shared UF8, UF9, and UOF7 polyhedra. Powder second-harmonic generation (SHG) measurements revealed that the SHG efficiency for U3F12(H2O) is comparable to that of α-SiO2. Magnetic susceptibility measurements indicated that the U(4+)(f(2))-containing material exhibits a singlet ground state at low temperature. IR and UV-vis reflectance spectra were obtained, and the thermal behavior was investigated by thermogravimetric analysis.

17.
J Am Chem Soc ; 134(18): 7679-89, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22335338

RESUMO

A methodology for the design of polar, inorganic structures is demonstrated here with the packing of lambda (Λ)-shaped basic building units (BBUs). Noncentrosymmetric (NCS) solids with interesting physical properties can be created with BBUs that lack an inversion center and are likely to pack into a polar configuration; previous methods to construct these solids have used NCS octahedra as BBUs. Using this methodology to synthesize NCS solids, one must increase the coordination of the NCS octahedra with maintenance of the noncentrosymmetry of the bulk. The first step in this progression from an NCS octahedron to an inorganic NCS solid is the formation of a bimetallic BBU. This step is exemplified with the compound CuVOF(4)(H(2)O)(7): this compound, presented here, crystallizes in an NCS structure with ordered, isolated [Cu(H(2)O)(5)](2+) cations and [VOF(4)(H(2)O)](2-) anions into Λ-shaped, bimetallic BBUs to form CuVOF(4)(H(2)O)(6)·H(2)O, owing to the Jahn-Teller distortion of Cu(2+). Conversely, the centrosymmetric heterotypes with the same formula MVOF(4)(H(2)O)(7) (M(II) = Co, Ni, and Zn) exhibit ordered, isolated [VOF(4)(H(2)O)](2-) and [M(H(2)O)(6)](2+) ionic species in a hydrogen bond network. CuVOF(4)(H(2)O)(7) exhibits a net polar moment while the heterotypes do not; this demonstrates that Λ-shaped BBUs give a greater probability for and, in this case, lead to NCS structures.


Assuntos
Cobre/química , Fluoretos/química , Óxidos/química , Compostos de Vanádio/química , Cristalografia por Raios X , Fluoretos/síntese química , Íons/síntese química , Íons/química , Modelos Moleculares , Óxidos/síntese química , Espectrofotometria Infravermelho , Compostos de Vanádio/síntese química
18.
Inorg Chem ; 51(4): 2662-8, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296559

RESUMO

Two new noncentrosymmetric (NCS) polar oxides, BaMgTe(2)O(7) and BaZnTe(2)O(7), have been synthesized and characterized, with their crystal structures determined by single crystal X-ray diffraction. The iso-structural materials exhibit structures consisting of layers of corner-shared MgO(5) or ZnO(5), Te(6+)O(6), and Te(4+)O(4) polyhedra that are separated by Ba(2+) cations. The Te(4+) cation is found in a highly asymmetric and polar coordination environment attributable to its stereoactive lone-pair. The alignment of the individual TeO(4) polar polyhedra results in macroscopic polarity for BaMgTe(2)O(7) and BaZnTe(2)O(7). Powder second-harmonic generation (SHG) measurements revealed a moderate SHG efficiency of approximately 5 × KDP (or 200 × α-SiO(2)) for both materials. Piezoelectric charge constants of 70 and 57 pm/V, and pyroelectric coefficients of -18 and -10 µC·m(-2)·K(-1) were obtained for BaMgTe(2)O(7) and BaZnTe(2)O(7), respectively. Although the materials are polar, frequency dependent polarization measurements indicated that the materials are not ferroelectric, that is, the observed macroscopic polarization cannot be reversed. Infrared, UV-vis diffuse spectroscopy, and thermal properties were also measured. Crystal data: BaMgTe(2)O(7), orthorhombic, space group Ama2 (No. 40), a = 5.558(2) Å, b = 15.215(6) Å, c = 7.307(3) Å, V = 617.9(4) Å(3), and Z = 4; BaZnTe(2)O(7), orthorhombic, space group Ama2 (No. 40), a = 5.5498(4) Å, b = 15.3161(11) Å, c = 7.3098(5) Å, V = 621.34(8) Å(3), and Z = 4.

19.
Inorg Chem ; 51(1): 609-19, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22145697

RESUMO

Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 µC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) Å, b = 16.764(5) Å, c = 9.679(5) Å, V = 1270.1(9) Å(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) Å, b = 9.788(8) Å, c = 8.440(7) Å, ß = 96.881(11)°, V = 1208.8(18) Å(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) Å, b = 5.3787(3) Å, c = 8.9853(5) Å, V = 673.16(6) Å(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) Å, b = 12.1579(15) Å, c = 12.8592(16) Å, V = 3933.7(8) Å(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) Å, b = 12.2147(10) Å, c = 13.0154(10) Å, V = 3979.1(6) Å(3), and Z = 8.

20.
J Am Chem Soc ; 133(32): 12422-5, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21776958

RESUMO

A new noncentrosymmetric (NCS) and polar material containing two lone-pair cations, Bi(3+) and I(5+), and exhibiting an Aurivillius-type (Bi(2)O(2))(2+) layer has been synthesized and structurally characterized. The material, BiO(IO(3)), exhibits strong second-harmonic generation (SHG), ∼12.5 × KDP (or ∼500 × α-SiO(2)), using 1064 nm radiation, and is found in the NCS polar orthorhombic space group Pca2(1) (No. 29). The structure consists of (Bi(2)O(2))(2+) cationic layers that are connected to (IO(3))(-) anions. The macroscopic polarity, observed along the c-axis direction, may be attributed to the alignment of the IO(3) polyhedra. In addition to the crystal structure and SHG measurements, polarization and piezoelectric measurements were performed, as well as electronic structure analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA