Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
New Phytol ; 239(2): 752-765, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149890

RESUMO

Soil microbial inoculants are expected to boost crop productivity under climate change and soil degradation. However, the efficiency of native vs commercialized microbial inoculants in soils with different fertility and impacts on resident microbial communities remain unclear. We investigated the differential plant growth responses to native synthetic microbial community (SynCom) and commercial plant growth-promoting rhizobacteria (PGPR). We quantified the microbial colonization and dynamic of niche structure to emphasize the home-field advantages for native microbial inoculants. A native SynCom of 21 bacterial strains, originating from three typical agricultural soils, conferred a special advantage in promoting maize growth under low-fertility conditions. The root : shoot ratio of fresh weight increased by 78-121% with SynCom but only 23-86% with PGPRs. This phenotype correlated with the potential robust colonization of SynCom and positive interactions with the resident community. Niche breadth analysis revealed that SynCom inoculation induced a neutral disturbance to the niche structure. However, even PGPRs failed to colonize the natural soil, they decreased niche breadth and increased niche overlap by 59.2-62.4%, exacerbating competition. These results suggest that the home-field advantage of native microbes may serve as a basis for engineering crop microbiomes to support food production in widely distributed poor soils.


Assuntos
Inoculantes Agrícolas , Solo , Solo/química , Microbiologia do Solo , Agricultura , Bactérias , Raízes de Plantas/microbiologia , Rizosfera
2.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33097512

RESUMO

Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.


Assuntos
Fenantrenos/metabolismo , Populus , Rizosfera , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Bactérias/genética , Biodegradação Ambiental , Florestas , Fungos/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química
3.
J Clin Microbiol ; 56(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899005

RESUMO

Serratia marcescens is an environmental bacterium that is commonly associated with outbreaks in neonatal intensive care units (NICUs). Investigations of S. marcescens outbreaks require efficient recovery and typing of clinical and environmental isolates. In this study, we investigated how the use of next-generation sequencing applications, such as bacterial whole-genome sequencing (WGS) and bacterial community profiling, could improve S. marcescens outbreak investigations. Phylogenomic links and potential antibiotic resistance genes and plasmids in S. marcescens isolates were investigated using WGS, while bacterial communities and relative abundances of Serratia in environmental samples were assessed using sequencing of bacterial phylogenetic marker genes (16S rRNA and gyrB genes). Typing results obtained using WGS for the 10 S. marcescens isolates recovered during a NICU outbreak investigation were highly consistent with those obtained using pulsed-field gel electrophoresis (PFGE), the current standard typing method for this bacterium. WGS also allowed the identification of genes associated with antibiotic resistance in all isolates, while no plasmids were detected. Sequencing of the 16S rRNA and gyrB genes both showed greater relative abundances of Serratia at environmental sampling sites that were in close contact with infected babies. Much lower relative abundances of Serratia were observed following disinfection of a room, indicating that the protocol used was efficient. Variations in the bacterial community composition and structure following room disinfection and among sampling sites were also identified through 16S rRNA gene sequencing. Together, results from this study highlight the potential for next-generation sequencing tools to improve and to facilitate outbreak investigations.


Assuntos
Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Surtos de Doenças , Técnicas de Diagnóstico Molecular/métodos , Infecções por Serratia/epidemiologia , Infecções por Serratia/microbiologia , Serratia marcescens/isolamento & purificação , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado/normas , Feminino , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Quebeque/epidemiologia , Análise de Sequência de DNA , Serratia marcescens/classificação , Serratia marcescens/genética
4.
Appl Environ Microbiol ; 82(18): 5530-41, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371586

RESUMO

UNLABELLED: Soil microbiome modification may alter system function, which may enhance processes like bioremediation. In this study, we filled microcosms with gamma-irradiated soil that was reinoculated with the initial soil or cultivated bacterial subsets obtained on regular media (REG-M) or media containing crude oil (CO-M). We allowed 8 weeks for microbiome stabilization, added crude oil and monoammonium phosphate, incubated the microcosms for another 6 weeks, and then measured the biodegradation of crude oil components, bacterial taxonomy, and functional gene composition. We hypothesized that the biodegradation of targeted crude oil components would be enhanced by limiting the microbial taxa competing for resources and by specifically selecting bacteria involved in crude oil biodegradation (i.e., CO-M). Postincubation, large differences in taxonomy and functional gene composition between the three microbiome types remained, indicating that purposeful soil microbiome structuring is feasible. Although phylum-level bacterial taxonomy was constrained, operational taxonomic unit composition varied between microbiome types. Contrary to our hypothesis, the biodegradation of C10 to C50 hydrocarbons was highest when the original microbiome was reinoculated, despite a higher relative abundance of alkane hydroxylase genes in the CO-M microbiomes and of carbon-processing genes in the REG-M microbiomes. Despite increases in the relative abundances of genes potentially linked to hydrocarbon processing in cultivated subsets of the microbiome, reinoculation of the initial microbiome led to maximum biodegradation. IMPORTANCE: In this study, we show that it is possible to sustainably modify microbial assemblages in soil. This has implications for biotechnology, as modification of gut microbial assemblages has led to improved treatments for diseases like Clostridium difficile infection. Although the soil environment determined which major phylogenetic groups of bacteria would dominate the assemblage, we saw differences at lower levels of taxonomy and in functional gene composition (e.g., genes related to hydrocarbon degradation). Further studies are needed to determine the success of such an approach in nonsterile environments. Although the biodegradation of certain crude oil fractions was still the highest when we inoculated with the diverse initial microbiome, the possibility of discovering and establishing microbiomes that are more efficient in crude oil degradation is not precluded.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Microbiota , Petróleo/metabolismo , Microbiologia do Solo , Biotransformação
5.
Proteomics ; 15(20): 3566-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223443

RESUMO

Here we harnessed the power of metaproteomics to assess the metabolic diversity and function of stratified aquatic microbial communities in the deep and expansive Lower St. Lawrence Estuary, located in eastern Canada. Vertical profiling of the microbial communities through the stratified water column revealed differences in metabolic lifestyles and in carbon and nitrogen processing pathways. In productive surface waters, we identified heterotrophic populations involved in the processing of high and low molecular weight organic matter from both terrestrial (e.g. cellulose and xylose) and marine (e.g. organic compatible osmolytes) sources. In the less productive deep waters, chemosynthetic production coupled to nitrification by MG-I Thaumarchaeota and Nitrospina appeared to be a dominant metabolic strategy. Similar to other studies of the coastal ocean, we identified methanol oxidation proteins originating from the common OM43 marine clade. However, we also identified a novel lineage of methanol-oxidizers specifically in the particle-rich bottom (i.e. nepheloid) layer. Membrane transport proteins assigned to the uncultivated MG-II Euryarchaeota were also specifically detected in the nepheloid layer. In total, these results revealed strong vertical structure of microbial taxa and metabolic activities, as well as the presence of specific "nepheloid" taxa that may contribute significantly to coastal ocean nutrient cycling.


Assuntos
Archaea/genética , Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Proteômica , Canadá , Carbono/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Metagenômica , Nitrificação/genética , Nitrogênio/metabolismo , Microbiologia da Água
6.
Environ Microbiol ; 17(8): 3025-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25970820

RESUMO

Although plants introduced for site restoration are pre-selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post-planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post-planting than 16 months post-planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post-planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant-fungus specificity may be essential.


Assuntos
Microbiota , Micorrizas/crescimento & desenvolvimento , Rizosfera , Salix/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/metabolismo , Instalações de Eliminação de Resíduos , Zinco/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Bactérias/classificação , Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , DNA Fúngico/genética , Recuperação e Remediação Ambiental/métodos , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Salix/metabolismo , Análise de Sequência de DNA , Solo/química , Oligoelementos/metabolismo
7.
Appl Environ Microbiol ; 81(17): 5855-66, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092461

RESUMO

Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments.


Assuntos
Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Poluição por Petróleo/análise , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Golfo do México , México , Água do Mar/química
8.
Environ Sci Technol ; 49(19): 11281-91, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26352597

RESUMO

This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.


Assuntos
Biotecnologia/métodos , Metabolômica/métodos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteômica/métodos , Biodegradação Ambiental , Ecossistema
9.
Appl Microbiol Biotechnol ; 99(5): 2419-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25343979

RESUMO

A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified. Degradation capacities for Mix3 and the isolated bacterial strains were characterized and compared. At day 113, we induced the expression of catabolic genes in Mix3 by adding the substrate mixture to resting cells and the metatranscriptome was analyzed. After addition of the substrate mixture, the relative abundance of Actinobacteria increased at day 222 while a shift between Rhodococcus and Mycobacterium was observed after 113 days. Mix3 was able to degrade 13 compounds completely, with partial degradation of isooctane and 2-ethylhexyl nitrate, but tert-butyl alcohol was not degraded. Rhodococcus wratislaviensis strain IFP 2016 isolated from Mix3 showed almost the same degradation capacities as Mix3: these results were not observed with the other isolated strains. Transcriptomic results revealed that Actinobacteria and in particular, Rhodococcus species, were major contributors in terms of total and catabolic gene transcripts while other species were involved in cyclohexane degradation. Not all the microorganisms identified at day 113 were active except R. wratislaviensis IFP 2016 that appeared to be a major player in the degradation activity observed in Mix3.


Assuntos
Actinobacteria/metabolismo , Hidrocarbonetos/metabolismo , Consórcios Microbianos , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Metagenômica/métodos , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de Tempo
10.
ISME Commun ; 4(1): ycae074, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38863723

RESUMO

Microorganisms can improve plant resistance to drought through various mechanisms, such as the production of plant hormones, osmolytes, antioxidants, and exopolysaccharides. It is, however, unclear how previous exposure to water stress affects the functional capacity of the soil microbial community to help plants resist drought. We compared two soils that had either a continuous or intermittent water stress history (WSH) for almost 40 years. We grew wheat in these soils and subjected it to water stress, after which we collected the rhizosphere soil and shotgun sequenced its metagenome. Wheat growing in soil with an intermittent WSH maintained a higher biomass when subjected to water stress. Genes related to indole-acetic acid and osmolyte production were more abundant in the metagenome of the soil with an intermittent WSH as compared to the soil with a continuous WSH. We suggest that an intermittent WSH selects traits beneficial for life under water stress.

11.
Appl Environ Microbiol ; 79(12): 3637-48, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563939

RESUMO

The Lost Hammer (LH) Spring is the coldest and saltiest terrestrial spring discovered to date and is characterized by perennial discharges at subzero temperatures (-5°C), hypersalinity (salinity, 24%), and reducing (≈-165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0%, wt/wt), dissolved H2S/sulfides (up to 25 ppm), ammonia (≈381 µM), and methane (11.1 g day(-1)). To determine its total functional and genetic potential and to identify its active microbial components, we performed metagenomic analyses of the LH Spring outlet microbial community and pyrosequencing analyses of the cDNA of its 16S rRNA genes. Reads related to Cyanobacteria (19.7%), Bacteroidetes (13.3%), and Proteobacteria (6.6%) represented the dominant phyla identified among the classified sequences. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic data set. In the cDNA profile of the LH Spring active community, ammonia oxidizers (Thaumarchaeota), denitrifiers (Pseudomonas spp.), sulfate reducers (Desulfobulbus spp.), and other sulfur oxidizers (Thermoprotei) were present, highlighting their involvement in nitrogen and sulfur cycling. Stress response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. Comparison of the composition of the functional community of the LH Spring to metagenomes from other saline/subzero environments revealed a close association between the LH Spring and another Canadian high-Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. Overall, this study provides insights into the metabolic potential and the active microbial populations that exist in this hypersaline cryoenvironment and contributes to our understanding of microbial ecology in extreme environments.


Assuntos
Temperatura Baixa , Sedimentos Geológicos/microbiologia , Metagenoma/genética , Nascentes Naturais/microbiologia , Salinidade , Archaea/genética , Regiões Árticas , Bacteroidetes/genética , Sequência de Bases , Cianobactérias/genética , Primers do DNA/genética , DNA Complementar/genética , Dados de Sequência Molecular , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Appl Environ Microbiol ; 79(23): 7398-412, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056457

RESUMO

Sediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per µm2, 68% less cyanobacterial biomass per µm2, 64% less algal biomass per µm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyll a per mm2 and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in community composition were also observed, with relatively more Alphaproteobacteria and Betaproteobacteria and less Cyanobacteria, Bacteroidetes, and Firmicutes in biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds.


Assuntos
Biofilmes/efeitos dos fármacos , Biota/efeitos dos fármacos , Células Eucarióticas/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Células Procarióticas/efeitos dos fármacos , Rios/microbiologia , Rios/parasitologia
13.
Trends Microbiol ; 31(5): 444-452, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36549949

RESUMO

Microorganisms are informative biological integrators of past and present environmental abiotic and biotic conditions. At the same time, they are directly involved in ecosystem processes. Unfortunately, the complexity of microbial communities has so far resulted in most studies being descriptive. Here, we suggest that signals in the microbiome data can be used to forecast future ecosystem processes. The combination of omics with various statistical learning approaches, selected based on accuracy-interpretability and bias-variance trade-offs, will be key to attain this goal, as exemplified by recent studies. The time is ripe for microbial ecologists to fully exploit the forecasting power of microbiomes.


Assuntos
Microbiota , Previsões
14.
ISME Commun ; 3(1): 30, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061589

RESUMO

Crops associate with microorganisms that help their resistance to biotic stress. However, it is not clear how the different partners of this association react during exposure to stress. This knowledge is needed to target the right partners when trying to adapt crops to climate change. Here, we grew wheat in the field under rainout shelters that let through 100%, 75%, 50% and 25% of the precipitation. At the peak of the growing season, we sampled plant roots and rhizosphere, and extracted and sequenced their RNA. We compared the 100% and the 25% treatments using differential abundance analysis. In the roots, most of the differentially abundant (DA) transcripts belonged to the fungi, and most were more abundant in the 25% precipitation treatment. About 10% of the DA transcripts belonged to the plant and most were less abundant in the 25% precipitation treatment. In the rhizosphere, most of the DA transcripts belonged to the bacteria and were generally more abundant in the 25% precipitation treatment. Taken together, our results show that the transcriptomic response of the wheat holobiont to decreasing precipitation levels is stronger for the fungal and bacterial partners than for the plant.

15.
PLoS One ; 18(10): e0292227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878639

RESUMO

The aim of this study was to determine whether the soil faunal-microbial interaction complexity (SFMIC) is a significant factor influencing the soil microbial communities and the willow growth in the context of PAH contamination. The SFMIC treatment had eight levels: just the microbial community, or the microbial community with nematodes, springtails, earthworms and all the possible combinations. SFMIC affected the height and biomass of willows after eight weeks or growth. SFMIC affected the structure and the composition of the bacterial, archaeal and fungal communities, with significant effects of SFMIC on the relative abundance of fungal genera such as Sphaerosporella, a known willow symbiont during phytoremediation, and bacterial phyla such as Actinobacteriota, containing many polycyclic aromatic hydrocarbons (PAH) degraders. These SFMIC effects on microbial communities were not clearly reflected in the community structure and abundance of PAH degraders, even though some degraders related to Actinobacteriota and the diversity of Gram-negative degraders were affected by the SFMIC treatments. Over 95% of PAH was degraded in all pots at the end of the experiment. Overall, our results suggest that, under our experimental conditions, SFMIC changes willow phytoremediation outcomes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Bactérias , Biodegradação Ambiental , Interações Microbianas
16.
Microbiome ; 11(1): 276, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102689

RESUMO

BACKGROUND: Leakages of cold, methane-rich fluids from subsurface reservoirs to the sea floor are termed cold seeps. Recent exploration of the deep sea has shed new light on the microbial communities in cold seeps. However, conventional metagenomic methods largely rely on reference databases and neglect the phylogeny of functional genes. RESULTS: In this study, we developed the REMIRGE program to retrieve the full-length functional genes from shotgun metagenomic reads and fully explored the phylogenetic diversity in cold seep sediments. The abundance and diversity of functional genes involved in the methane, sulfur, and nitrogen cycles differed in the non-seep site and five cold seep sites. In one Haima cold seep site, the divergence of functional groups was observed at the centimeter scale of sediment depths, with the surface layer potentially acting as a reservoir of microbial species and functions. Additionally, positive correlations were found between specific gene sequence clusters of relevant genes, indicating coupling occurred within specific functional groups. CONCLUSION: REMIRGE revealed divergent phylogenetic diversity of functional groups and functional pathway preferences in a deep-sea cold seep at finer scales, which could not be detected by conventional methods. Our work highlights that phylogenetic information is conducive to more comprehensive functional profiles, and REMIRGE has the potential to uncover more new insights from shotgun metagenomic data. Video Abstract.


Assuntos
Sedimentos Geológicos , Microbiota , Oceanos e Mares , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Metagenômica , Temperatura Baixa
17.
Vet Immunol Immunopathol ; 255: 110533, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563567

RESUMO

The aim of this study was to evaluate the potential of micronutrients and feed additives to modulate intestinal microbiota and systemic and mucosal immune responses in weaned pigs infected with Salmonella. At weaning, 32 litters of 12 piglets each were allocated to four dietary treatments: 1) control diet (CTRL), 2) CTRL supplemented with chlortetracycline (ATB), 3) CTRL supplemented with a cocktail of feed additives (CKTL); and 4) CKTL diet containing bovine colostrum in replacement of spray-dry animal plasma (CKTL+COL). The CKTL supplement included cranberry extract, encapsulated carvacrol and yeast-derived products and an enriched selenium and vitamin premix. Three weeks after weaning, four pigs per litter were orally inoculated with Salmonella Typhimurium DT104. Half of them were euthanized 3 days post-infection (dpi) and the other half, 7 dpi. The expression of IL6, TNF, IL8, monocyte chemoattractant protein 1 (MCP1), IFNG, cyclooxygenase 2 (COX2), glutathione peroxidase 2 (GPX2) and ß-defensin 2 (DEFB2) showed a peaked response at 3 dpi (P < 0.05). Results also revealed that DEFB2 expression was higher at 3 dpi in CTRL and CKTL groups than in ATB (P = 0.01 and 0.06, respectively) while GPX2 gene was markedly increased at 3 and 7 dpi in pigs fed CKTL or CKTL+COL diet compared to CTRL pigs (P < 0.05). In piglets fed CKTL or CKTL+COL diet, intestinal changes in microbial communities were less pronounced after exposure to Salmonella compared to CTRL and progressed faster toward the status before Salmonella challenge (AMOVA P < 0.01). Furthermore, the relative abundance of several families was either up- or down-regulated in pigs fed CKTL or CKTL+COL diet after Salmonella challenge. In conclusion, weaning diet enriched with bovine colostrum, vitamins and mixture of feed additives mitigated the influence of Salmonella infection on intestinal microbial populations and modulate systemic and intestinal immune defences.


Assuntos
Suplementos Nutricionais , Microbiota , Animais , Suínos , Bovinos , Desmame , Dieta/veterinária , Salmonella typhimurium , Imunidade , Ração Animal/análise
18.
ISME Commun ; 3(1): 32, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076737

RESUMO

Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment. To test this hypothesis, we sampled bulk soil, rhizosphere soil and roots of 10 field-grown wheat genotypes, twice per year, for 4 years. DNA was extracted and regions of the bacterial 16 S rRNA and CPN60 genes and the fungal ITS region were amplified and sequenced. The effect of genotype was highly contingent on the time of sampling and on the plant compartment sampled. Only for a few sampling dates, were the microbial communities significantly different across genotypes. The effect of genotype was most often significant for root microbial communities. The three marker genes used provided a highly coherent picture of the effect of genotype. Taken together, our results confirm that microbial communities in the plant environment strongly vary across compartments, growth stages, and years, and that this can mask the effect of genotype.

19.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38012121

RESUMO

Naphthenic acids (NAs) are a complex mixture of organic compounds released during bitumen extraction from mined oil sands that are important contaminants of oil sands process-affected water (OSPW). NAs can be toxic to aquatic organisms and, therefore, are a main target compound for OSPW. The ability of microorganisms to degrade NAs can be exploited for bioremediation of OSPW using constructed wetland treatment systems (CWTS), which represent a possible low energy and low-cost option for scalable in situ NA removal. Recent advances in genomics and analytical chemistry have provided insights into a better understanding of the metabolic pathways and genes involved in NA degradation. Here, we discuss the ecology of microbial NA degradation with a focus on CWTS and summarize the current knowledge related to the metabolic pathways and genes used by microorganisms to degrade NAs. Evidence to date suggests that NAs are mostly degraded aerobically through ring cleavage via the beta-oxidation pathway, which can be combined with other steps such as aromatization, alpha-oxidation, omega-oxidation, or activation as coenzyme A (CoA) thioesters. Anaerobic NA degradation has also been reported via the production of benzoyl-CoA as an intermediate and/or through the involvement of methanogens or nitrate, sulfate, and iron reducers. Furthermore, we discuss how genomic, statistical, and modeling tools can assist in the development of improved bioremediation practices.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Biodegradação Ambiental , Água/química , Áreas Alagadas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/toxicidade , Genômica , Poluentes Químicos da Água/análise
20.
Appl Environ Microbiol ; 78(21): 7626-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923391

RESUMO

The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil sands mining on neighboring aquatic microbial community structure. Microbial communities were sampled from sediments in the Athabasca River and its tributaries as well as in oil sands tailings ponds. Bacterial and archaeal 16S rRNA genes were amplified and sequenced using next-generation sequencing technology (454 and Ion Torrent). Sediments were also analyzed for a variety of chemical and physical characteristics. Microbial communities in the fine tailings of the tailings ponds were strikingly distinct from those in the Athabasca River and tributary sediments. Microbial communities in sediments taken close to tailings ponds were more similar to those in the fine tailings of the tailings ponds than to the ones from sediments further away. Additionally, bacterial diversity was significantly lower in tailings pond sediments. Several taxonomic groups of Bacteria and Archaea showed significant correlations with the concentrations of different contaminants, highlighting their potential as bioindicators. We also extensively validated Ion Torrent sequencing in the context of environmental studies by comparing Ion Torrent and 454 data sets and by analyzing control samples.


Assuntos
Meio Ambiente , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Campos de Petróleo e Gás , Poluição por Petróleo/análise , Petróleo , Rios/microbiologia , Alberta , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Canadá , Monitoramento Ambiental , Sedimentos Geológicos/química , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/análise , Rios/química , Análise de Sequência de DNA , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA