Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Chem Inf Model ; 63(18): 5773-5783, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37655823

RESUMO

The emergence of ultra-large screening libraries, filled to the brim with billions of readily available compounds, poses a growing challenge for docking-based virtual screening. Machine learning (ML)-boosted strategies like the tool HASTEN combine rapid ML prediction with the brute-force docking of small fractions of such libraries to increase screening throughput and take on giga-scale libraries. In our case study of an anti-bacterial chaperone and an anti-viral kinase, we first generated a brute-force docking baseline for 1.56 billion compounds in the Enamine REAL lead-like library with the fast Glide high-throughput virtual screening protocol. With HASTEN, we observed robust recall of 90% of the true 1000 top-scoring virtual hits in both targets when docking only 1% of the entire library. This reduction of the required docking experiments by 99% significantly shortens the screening time. In the kinase target, the employment of a hydrogen bonding constraint resulted in a major proportion of unsuccessful docking attempts and hampered ML predictions. We demonstrate the optimization potential in the treatment of failed compounds when performing ML-boosted screening and benchmark and showcase HASTEN as a fast and robust tool in a growing arsenal of approaches to unlock the chemical space covered by giga-scale screening libraries for everyday drug discovery campaigns.


Assuntos
Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais , Benchmarking , Aprendizado de Máquina
2.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071079

RESUMO

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Assuntos
Autoantígenos/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteína Fosfatase 2/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Lâmina Nuclear/efeitos dos fármacos , Lâmina Nuclear/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/genética , Proteoma/efeitos dos fármacos , Proto-Oncogene Mas , RNA Interferente Pequeno/genética , Biologia de Sistemas
3.
Eur Heart J ; 37(43): 3267-3278, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27655226

RESUMO

AIMS: Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of genomic risk scores (GRSs) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear. Our aim was to construct and externally validate a CHD GRS, in terms of lifetime CHD risk and relative to traditional clinical risk scores. METHODS AND RESULTS: We generated a GRS of 49 310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of CHD, then independently tested it using five prospective population cohorts (three FINRISK cohorts, combined n = 12 676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined n = 3406, 587 incident CHD events). The GRS was associated with incident CHD (FINRISK HR = 1.74, 95% confidence interval (CI) 1.61-1.86 per S.D. of GRS; Framingham HR = 1.28, 95% CI 1.18-1.38), and was largely unchanged by adjustment for known risk factors, including family history. Integration of the GRS with the FRS or ACC/AHA13 scores improved the 10 years risk prediction (meta-analysis C-index: +1.5-1.6%, P < 0.001), particularly for individuals ≥60 years old (meta-analysis C-index: +4.6-5.1%, P < 0.001). Importantly, the GRS captured substantially different trajectories of absolute risk, with men in the top 20% of attaining 10% cumulative CHD risk 12-18 y earlier than those in the bottom 20%. High genomic risk was partially compensated for by low systolic blood pressure, low cholesterol level, and non-smoking. CONCLUSIONS: A GRS based on a large number of SNPs improves CHD risk prediction and encodes different trajectories of lifetime risk not captured by traditional clinical risk scores.


Assuntos
Doença das Coronárias , Feminino , Genômica , Cardiopatias , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
4.
PLoS Biol ; 9(6): e1000623, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666801

RESUMO

Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.


Assuntos
Adipócitos/metabolismo , Adipócitos/patologia , Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Obesidade/patologia , Acetiltransferases/metabolismo , Tecido Adiposo/metabolismo , Adulto , Diferenciação Celular , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Masculino , Fluidez de Membrana , Modelos Biológicos , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Estudos em Gêmeos como Assunto , Adulto Jovem
5.
Arterioscler Thromb Vasc Biol ; 33(4): 847-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23413431

RESUMO

OBJECTIVE: Low high-density lipoprotein cholesterol (HDL-C) is associated with cardiometabolic pathologies. In this study, we investigate the biological pathways and individual genes behind low HDL-C by integrating results from 3 high-throughput data sources: adipose tissue transcriptomics, HDL lipidomics, and dense marker genotypes from Finnish individuals with low or high HDL-C (n=450). APPROACH AND RESULTS: In the pathway analysis of genetic data, we demonstrate that genetic variants within inflammatory pathways were enriched among low HDL-C associated single-nucleotide polymorphisms, and the expression of these pathways upregulated in the adipose tissue of low HDL-C subjects. The lipidomic analysis highlighted the change in HDL particle quality toward putatively more inflammatory and less vasoprotective state in subjects with low HDL-C, as evidenced by their decreased antioxidative plasmalogen contents. We show that the focal point of these inflammatory pathways seems to be the HLA region with its low HDL-associated alleles also associating with more abundant local transcript levels in adipose tissue, increased plasma vascular cell adhesion molecule 1 (VCAM1) levels, and decreased HDL particle plasmalogen contents, markers of adipose tissue inflammation, vascular inflammation, and HDL antioxidative potential, respectively. In a population-based look-up of the inflammatory pathway single-nucleotide polymorphisms in a large Finnish cohorts (n=11 211), no association of the HLA region was detected for HDL-C as quantitative trait, but with extreme HDL-C phenotypes, implying the presence of low or high HDL genes in addition to the population-genomewide association studies-identified HDL genes. CONCLUSIONS: Our study highlights the role of inflammation with a genetic component in subjects with low HDL-C and identifies novel cis-expression quantitative trait loci (cis-eQTL) variants in HLA region to be associated with low HDL-C.


Assuntos
Tecido Adiposo/metabolismo , HDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Perfilação da Expressão Gênica , Genômica , Inflamação/sangue , Inflamação/genética , Biomarcadores/sangue , Doença da Artéria Coronariana/imunologia , Feminino , Finlândia , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA/genética , Inquéritos Epidemiológicos , Humanos , Inflamação/imunologia , Modelos Lineares , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fenótipo , Plasmalogênios/sangue , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco , Molécula 1 de Adesão de Célula Vascular/sangue
6.
Mol Oncol ; 17(9): 1803-1820, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458534

RESUMO

Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ-8-061 (also known as DT-061), DBK-1154, and DBK-1160. We also provide proof-of-principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain-penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A-elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple-strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.


Assuntos
Neoplasias Encefálicas , Citostáticos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Fosfatase 2/metabolismo , Citostáticos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Apoptose , Encéfalo , Linhagem Celular Tumoral
7.
PLoS Comput Biol ; 7(10): e1002257, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046124

RESUMO

Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede ß-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Modelos Biológicos , Adiponectina/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Lisofosfatidilcolinas/metabolismo , Masculino , Redes e Vias Metabólicas , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Fatores de Risco
8.
Sci Rep ; 12(1): 13796, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963891

RESUMO

Therapeutic resistance to kinase inhibitors constitutes a major unresolved clinical challenge in cancer and especially in glioblastoma. Multi-kinase inhibitors may be used for simultaneous targeting of multiple target kinases and thereby potentially overcome kinase inhibitor resistance. However, in most cases the identification of the target kinases mediating therapeutic effects of multi-kinase inhibitors has been challenging. To tackle this important problem, we developed an actionable targets of multi-kinase inhibitors (AToMI) strategy and used it for characterization of glioblastoma target kinases of staurosporine derivatives displaying synergy with protein phosphatase 2A (PP2A) reactivation. AToMI consists of interchangeable modules combining drug-kinase interaction assay, siRNA high-throughput screening, bioinformatics analysis, and validation screening with more selective target kinase inhibitors. As a result, AToMI analysis revealed AKT and mitochondrial pyruvate dehydrogenase kinase PDK1 and PDK4 as kinase targets of staurosporine derivatives UCN-01, CEP-701, and K252a that synergized with PP2A activation across heterogeneous glioblastoma cells. Based on these proof-of-principle results, we propose that the application and further development of AToMI for clinically applicable multi-kinase inhibitors could provide significant benefits in overcoming the challenge of lack of knowledge of the target specificity of multi-kinase inhibitors.


Assuntos
Antineoplásicos , Glioblastoma , Glioblastoma/tratamento farmacológico , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 2 , Piruvato Desidrogenase Quinase de Transferência de Acetil , Estaurosporina/farmacologia
9.
J Lipid Res ; 51(8): 2341-51, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20431113

RESUMO

A low level of high density lipoprotein cholesterol (HDL-C) is a powerful risk factor for cardiovascular disease. However, despite the reported key role of apolipo-proteins, specifically, apoA-I, in HDL metabolism, lipid molecular composition of HDL particles in subjects with high and low HDL-C levels is currently unknown. Here lipidomics was used to study HDL derived from well-characterized high and low HDL-C subjects. Low HDL-C subjects had elevated triacylglycerols and diminished lysophosphatidylcholines and sphingomyelins. Using information about the lipid composition of HDL particles in these two groups, we reconstituted HDL particles in silico by performing large-scale molecular dynamics simulations. In addition to confirming the measured change in particle size, we found that the changes in lipid composition also induced specific spatial distributions of lipids within the HDL particles, including a higher amount of triacylglycerols at the surface of HDL particles in low HDL-C subjects. Our findings have important implications for understanding HDL metabolism and function. For the first time we demonstrate the power of combining molecular profiling of lipoproteins with dynamic modeling of lipoprotein structure.


Assuntos
HDL-Colesterol/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Biologia Computacional , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Conformação Proteica , Triglicerídeos/metabolismo
10.
J Lipid Res ; 51(5): 1101-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20040631

RESUMO

The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites, e.g., pyruvic acid, citric acid, fumaric acid, and malic acid, while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue, and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism and highlights its role in the development of metabolic diseases.


Assuntos
Metabolismo Energético , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Metabolismo dos Lipídeos , Metagenoma/fisiologia , Adipócitos Brancos/metabolismo , Animais , Quilomícrons/sangue , Vida Livre de Germes , Absorção Intestinal , Fígado/metabolismo , Masculino , Espectrometria de Massas , Metaboloma , Camundongos , Fosfatidilcolinas/sangue , Fosfatidilcolinas/metabolismo , Ácido Pirúvico/sangue , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos/sangue , Ácidos Tricarboxílicos/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
11.
PLoS Genet ; 3(4): e64, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17465682

RESUMO

Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/-) Lep(ob)/Lep(ob) (POKO mouse), resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of beta-cells to insulin resistance.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Metabolismo dos Lipídeos/genética , Lipídeos/efeitos adversos , PPAR gama/fisiologia , Animais , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Feminino , Hiperglicemia/genética , Hiperglicemia/patologia , Insulina/sangue , Resistência à Insulina/genética , Células Secretoras de Insulina/patologia , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , PPAR gama/genética
12.
Cancer Res ; 80(7): 1414-1427, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029551

RESUMO

For maximal oncogenic activity, cellular MYC protein levels need to be tightly controlled so that they do not induce apoptosis. Here, we show how ubiquitin ligase UBR5 functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 ubiquitinates MYC and its effects on MYC protein stability are independent of FBXW7. Silencing of endogenous UBR5 induced MYC protein expression and regulated MYC target genes. Consistent with the tumor suppressor function of UBR5 (HYD) in Drosophila, HYD suppressed dMYC-dependent overgrowth of wing imaginal discs. In contrast, in cancer cells, UBR5 suppressed MYC-dependent priming to therapy-induced apoptosis. Of direct cancer relevance, MYC and UBR5 genes were coamplified in MYC-driven human cancers. Functionally, UBR5 suppressed MYC-mediated apoptosis in p53-mutant breast cancer cells with UBR5/MYC coamplification. Furthermore, single-cell immunofluorescence analysis demonstrated reciprocal expression of UBR5 and MYC in human basal-type breast cancer tissues. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC activity. In MYC-amplified, and p53-mutant breast cancer cells, UBR5 has an important role in suppressing MYC-mediated apoptosis priming and in protection from drug-induced apoptosis. SIGNIFICANCE: These findings identify UBR5 as a novel MYC regulator, the inactivation of which could be very important for understanding of MYC dysregulation on cancer cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1414/F1.large.jpg.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Modelos Animais , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Análise Serial de Tecidos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
13.
Exp Eye Res ; 89(5): 604-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19591827

RESUMO

The gut microbiota affects host lipid metabolism and is considered an environmental factor that contributes to development of obesity. To investigate whether the gut microbiota affects the eye lipidome, we performed comprehensive lipidomic profiling of lens and retina from conventionally raised and germ-free mice. Conventionally raised mice had diminished phosphatidylcholines in the lens and elevated ethanolamine plasmalogens in the retina. Diminishment of lens phosphatidylcholines in the presence of gut microbiota suggests that the conventionally raised mice are exposed over time to more oxidative stress than germ-free mice. Consistent with this, their lifespan is also shorter. Our findings may open a new area of investigation how modulation of gut microbiota affects the eye health.


Assuntos
Trato Gastrointestinal/microbiologia , Cristalino/metabolismo , Metabolismo dos Lipídeos , Retina/metabolismo , Animais , Cromatografia Líquida , Vida Livre de Germes , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosfatidilcolinas/metabolismo , Plasmalogênios/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Bioinformatics ; 23(13): i519-28, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17646339

RESUMO

MOTIVATION: Serum lipids have been traditionally studied in the context of lipoprotein particles. Today's emerging lipidomics technologies afford sensitive detection of individual lipid molecular species, i.e. to a much greater detail than the scale of lipoproteins. However, such global serum lipidomic profiles do not inherently contain any information on where the detected lipid species are coming from. Since it is too laborious and time consuming to routinely perform serum fractionation and lipidomics analysis on each lipoprotein fraction separately, this presents a challenge for the interpretation of lipidomic profile data. An exciting and medically important new bioinformatics challenge today is therefore how to build on extensive knowledge of lipid metabolism at lipoprotein levels in order to develop better models and bioinformatics tools based on high-dimensional lipidomic data becoming available today. RESULTS: We developed a hierarchical Bayesian regression model to study lipidomic profiles in serum and in different lipoprotein classes. As a background data for the model building, we utilized lipidomic data for each of the lipoprotein fractions from 5 subjects with metabolic syndrome and 12 healthy controls. We clustered the lipid profiles and applied a regression model within each cluster separately. We found that the amount of a lipid in serum can be adequately described by the amounts of lipids in the lipoprotein classes. In addition to improved ability to interpret lipidomic data, we expect that our approach will also facilitate dynamic modelling of lipid metabolism at the individual molecular species level.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Lipídeos/sangue , Lipoproteínas/sangue , Síndrome Metabólica/sangue , Análise em Microsséries/métodos , Teorema de Bayes , Humanos
15.
Mol Biosyst ; 4(2): 121-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18213405

RESUMO

Recent advances in mass spectrometry (MS)-based techniques for lipidomic analysis have empowered us with the tools that afford studies of lipidomes at the systems level. However, these techniques pose a number of challenges for lipidomic raw data processing, lipid informatics, and the interpretation of lipidomic data in the context of lipid function and structure. Integration of lipidomic data with other systemic levels, such as genomic or proteomic, in the context of molecular pathways and biophysical processes provides a basis for the understanding of lipid function at the systems level. The present report, based on the limited literature, is an update on a young but rapidly emerging field of lipid informatics and related pathway reconstruction strategies.


Assuntos
Biologia Computacional/métodos , Lipídeos , Bases de Dados Factuais , Metabolismo dos Lipídeos , Lipídeos/análise , Lipídeos/química
16.
Metabolism ; 78: 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28941595

RESUMO

BACKGROUND: There is a need for early markers to track and predict the development of type 2 diabetes mellitus (T2DM) from the state of normal glucose tolerance through prediabetes. In this study we tested whether the plasma molecular lipidome has biomarker potential to predicting the onset of T2DM. METHODS: We applied global lipidomic profiling on plasma samples from well-phenotyped men (107 cases, 216 controls) participating in the longitudinal METSIM study at baseline and at five-year follow-up. To validate the lipid markers, an additional study with a representative sample of adult male population (n=631) was also conducted. A total of 277 plasma lipids were analyzed using the lipidomics platform based on ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry. Lipids with the highest predictive power for the development of T2DM were computationally selected, validated and compared to standard risk models without lipids. RESULTS: A persistent lipid signature with higher levels of triacylglycerols and diacyl-phospholipids as well as lower levels of alkylacyl phosphatidylcholines was observed in progressors to T2DM. Lysophosphatidylcholine acyl C18:2 (LysoPC(18:2)), phosphatidylcholines PC(32:1), PC(34:2e) and PC(36:1), and triacylglycerol TG(17:1/18:1/18:2) were selected to the full model that included metabolic risk factors and FINDRISC variables. When further adjusting for BMI and age, these lipids had respective odds ratios of 0.32, 2.4, 0.50, 2.2 and 0.31 (all p<0.05) for progression to T2DM. The independently-validated predictive power improved in all pairwise comparisons between the lipid model and the respective standard risk model without the lipids (integrated discrimination improvement IDI>0; p<0.05). Notably, the lipid models remained predictive of the development of T2DM in the fasting plasma glucose-matched subset of the validation study. CONCLUSION: This study indicates that a lipid signature characteristic of T2DM is present years before the diagnosis and improves prediction of progression to T2DM. Molecular lipid biomarkers were shown to have predictive power also in a high-risk group, where standard risk factors are not helpful at distinguishing progressors from non-progressors.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Lipídeos/sangue , Biomarcadores/sangue , Progressão da Doença , Finlândia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Fatores de Risco
17.
Sci Transl Med ; 10(450)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021885

RESUMO

Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
18.
Cell Chem Biol ; 25(2): 224-229.e2, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29276046

RESUMO

Knowledge of the full target space of bioactive substances, approved and investigational drugs as well as chemical probes, provides important insights into therapeutic potential and possible adverse effects. The existing compound-target bioactivity data resources are often incomparable due to non-standardized and heterogeneous assay types and variability in endpoint measurements. To extract higher value from the existing and future compound target-profiling data, we implemented an open-data web platform, named Drug Target Commons (DTC), which features tools for crowd-sourced compound-target bioactivity data annotation, standardization, curation, and intra-resource integration. We demonstrate the unique value of DTC with several examples related to both drug discovery and drug repurposing applications and invite researchers to join this community effort to increase the reuse and extension of compound bioactivity data.


Assuntos
Consenso , Bases de Conhecimento , Descoberta de Drogas , Interações Medicamentosas , Reposicionamento de Medicamentos , Humanos , Preparações Farmacêuticas
19.
BMC Bioinformatics ; 8: 93, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17362505

RESUMO

BACKGROUND: Success of metabolomics as the phenotyping platform largely depends on its ability to detect various sources of biological variability. Removal of platform-specific sources of variability such as systematic error is therefore one of the foremost priorities in data preprocessing. However, chemical diversity of molecular species included in typical metabolic profiling experiments leads to different responses to variations in experimental conditions, making normalization a very demanding task. RESULTS: With the aim to remove unwanted systematic variation, we present an approach that utilizes variability information from multiple internal standard compounds to find optimal normalization factor for each individual molecular species detected by metabolomics approach (NOMIS). We demonstrate the method on mouse liver lipidomic profiles using Ultra Performance Liquid Chromatography coupled to high resolution mass spectrometry, and compare its performance to two commonly utilized normalization methods: normalization by l2 norm and by retention time region specific standard compound profiles. The NOMIS method proved superior in its ability to reduce the effect of systematic error across the full spectrum of metabolite peaks. We also demonstrate that the method can be used to select best combinations of standard compounds for normalization. CONCLUSION: Depending on experiment design and biological matrix, the NOMIS method is applicable either as a one-step normalization method or as a two-step method where the normalization parameters, influenced by variabilities of internal standard compounds and their correlation to metabolites, are first calculated from a study conducted in repeatability conditions. The method can also be used in analytical development of metabolomics methods by helping to select best combinations of standard compounds for a particular biological matrix and analytical platform.


Assuntos
Fenômenos Fisiológicos Celulares , Bases de Dados de Proteínas/normas , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Expressão Gênica/fisiologia , Modelos Biológicos , Proteoma/metabolismo , Algoritmos , Simulação por Computador , Valores de Referência
20.
Oncotarget ; 8(27): 44550-44566, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28562352

RESUMO

Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.


Assuntos
Autorrenovação Celular/genética , Galectina 1/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas ras/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Galectina 1/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Esferoides Celulares , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Células Tumorais Cultivadas , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA