Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(15): 9497-9564, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436918

RESUMO

This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36780369

RESUMO

With magnesium being a cost-effective anode metal compared to the other conventional Li-based anodes in the energy market, it could be a capable source of energy storage. However, Mg-O2 batteries have struggled its way to overcome the poor cycling stability and sluggish reaction kinetics. Therefore, Ru metallic nanoparticles on carbon nanotubes (CNTs) were introduced as a cathode for Mg-O2 batteries, which are known for their inherent electronic properties, large surface area, and increased crystallinity to favor remarkable oxygen reduction reactions and oxygen evolution reactions (ORR and OER). Also, we deployed a first-of-its-kind, conducive mixed electrolyte (CME) (2 M Mg(NO3)2:1 M Mg(TFSI)2/diglyme). Hence, this synergistic incorporation of CME-based Ru/CNT Mg-O2 batteries could unleash long cycle life with low overpotential, excellent reversibility, and high ionic conductivity and also reduces the intrinsic corrosion behavior of Mg anodes. Correspondingly, this novel amalgamation of CME with Ru/CNT cathode has displayed superior cyclic stability of 65 cycles and a maximum discharge potential of 25 793 mAh g-1 with a small overvoltage plateau of 1.4 V, noticeably subjugating the findings of conventional single electrolyte (CSE) (1 M Mg(TFSI)2/diglyme). This CME-based Ru/CNT Mg-O2 battery design could have a significant outcome as a future battery technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA