Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15915-15924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833535

RESUMO

Considering the increasing demand for high-resolution light-emitting diodes (LEDs), it is important that direct fine patterning technologies for LEDs be developed, especially for quantum-dot LEDs (QLEDs). Traditionally, the patterning of QLEDs relies on resin-based photolithography techniques, requiring multiple steps and causing performance deterioration. Nondestructive direct patterning may provide an easy and stepwise method to achieve fine-pixelated units in QLEDs. In this study, two isomeric tridentate cross-linkers (X8/X9) are presented and can be blended into the hole transport layer (HTL) and the emissive layer (EML) of QLEDs. Because of their photosensitivity, the in situ cross-linking process can be efficiently triggered by ultraviolet irradiation, affording high solvent resistance and nondestructive direct patterning of the layers. Red QLEDs using the cross-linked HTL demonstrate an impressive external quantum efficiency of up to 22.45%. Through lithographic patterning enabled by X9, line patterns of HTL and EML films exhibit widths as narrow as 2 and 4 µm, respectively. Leveraging the patterned HTL and EML, we show the successful fabrication of pixelated QLED devices with an area size of 3 × 3 mm2, alongside the successful production of dual-color pixelated QLED devices. These findings showcase the promising potential of direct patterning facilitated by engineered cross-linkers for the cost-effective fabrication of pixelated QLED displays.

2.
ACS Appl Mater Interfaces ; 16(37): 49563-49573, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231017

RESUMO

In this work, an efficient and robust hole transport layer (HTL) based on blended poly((9,9-dioctylfluorenyl-2,7-diyl)-alt-(9-(2-ethylhexyl)-carbazole-3,6-diyl)) (PF8Cz) and crosslinkable 3,3'-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(9-(4-vinylphenyl)-9H-carbazole) (FLCZ-V) is introduced for high-performance and stable blue quantum dot-based light-emitting diodes (QLEDs), wherein FLCZ-V can in situ-crosslink to a continuous network polymer after thermal treatment and the linear polymer PF8CZ becomes intertwined and imprisoned. As a result, the blended HTL shows a high hole mobility (1.27 × 10-4 cm2 V-1 s-1) and gradient HOMO levels (-5.4 eV of PF8CZ and -5.7 eV of FLCZ-V) that can facilitate hole injecting so as to ameliorate the charge balance and, at the same time, achieve better electron-blocking capability that can effectively attenuate HTL decomposition. Meanwhile, the crosslinked blended HTL showed excellent solvent resistance and a high surface energy of 40.34 mN/m, which is favorable to enhance wettability for the deposition of a follow-up layer and attain better interfacial contact. Based on the blended HTL, blue QLEDs were fabricated by both spin-coating and inkjet printing. For the spin-coated blue QLED, a remarkable enhancement of external quantum efficiency (EQE) of 15.5% was achieved. Also, the EQE of the inkjet-printed blue QLED reached 9.2%, which is thus far the best result for the inkjet-printed blue QLED.

3.
Nanoscale ; 14(38): 14122-14128, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36102055

RESUMO

Manufacturing cost is a major concern for electrochromic device (ECD) applications in smart windows for energy saving and low-carbon economy. Fully printing instead of a vacuum-based chemical vapor deposition (CVD) process is favored for large-scale fabrication of ECDs. To adapt to the screen printing process, a UV curable solid-state electrolyte based on lithium bis(trifluoromethane-sulfonyl) imide (LiTFSI) was specially formulated. It contains poly(ethylene glycol) diacrylate (PEG-DA), LiTFSI, water, and ethyl acetate. The optimized ECDs have achieved a 0.6 s bleaching time at 0.6 V and a 1.4 s coloring time at -0.5 V. The ECDs also exhibited excellent stability, which could endure 100 000 cycles of color switching while still maintaining 35% of transmittance change at a 550 nm wavelength. A demo ECD has been fabricated with a screen printed electrolyte, exhibiting stable switching between the clear state and patterned color state.

4.
ACS Appl Mater Interfaces ; 14(34): 39149-39158, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35973830

RESUMO

Polymeric hole-transport materials (HTMs) have been widely used in quantum-dot light-emitting diodes (QLEDs). However, their solution processability normally causes interlayer erosion and unstable film state, leading to undesired device performance. Besides, the imbalance of hole and electron transport in QLEDs also damages the device interfaces. In this study, we designed a bis-diazo compound, X1, as carbene cross-linker for polymeric HTM. Irradiated by ultraviolet and heating, a poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4'-(N-(4-butylphenyl))] (TFB)/X1 blend can achieve fast "electronically clean" cross-linking with ∼100% solvent resistance. The cross-linking reduced the stacking behaviors of TFB and thus led to a lower hole-transport mobility, whereas it was a good match of electron mobility. The carbene-mediated TFB cross-linking also downshifted the HOMO level from -5.3 to -5.5 eV, delivering a smaller hole-transport energy barrier. Benefiting from these, the cross-linked QLED showed enhanced device performances over the pristine device, with EQE, power efficiency, and current efficiency being elevated by nearly 20, 15, and 83%, respectively. To the best of our knowledge, this is the first report about a bis-diazo compound based carbene cross-linker built into a polymeric HTM for a QLED with enhanced device performance.

5.
Adv Mater ; 31(18): e1804723, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30907041

RESUMO

The tandem structure is an efficient way to simultaneously tackle absorption and thermalization losses of the single junction solar cells. In this work, a high-performance tandem organic solar cell (OSC) using two subcells with the same donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and two acceptors, F-M and 2,9-bis(2-methylene-(3(1,1-dicyanomethylene)benz[f ]indanone))7,12-dihydro-(4,4,10,10-tetrakis(4-hexylphenyl)-5,11-diocthylthieno[3',2':4,5]cyclopenta[1,2-b]thieno[2″,3″:3',4']cyclopenta[1',2':4,5]thieno[2,3-f][1]benzothiophene (NNBDT), with complementary absorptions is demonstrated. The two subcells show high Voc with value of 0.99 V for the front cell and 0.86 V for the rear cell, which is the prerequisite for obtaining high Voc of their series-connected tandem device. Although there is much absorption overlap for the subcells, a decent Jsc of the tandem cell is still obtained owing to the complementary absorption of the two acceptors in a wide range. With systematic device optimizations, a best power conversion efficiency of 14.52% is achieved for the tandem device, with a high Voc of 1.82 V, a notable FF of 74.7%, and a decent Jsc of 10.68 mA cm-2 . This work demonstrates a promising strategy of fabricating high-efficiency tandem OSCs through elaborate selection of the active layer materials in each subcell and tradeoff of the Voc and Jsc of the tandem cells.

6.
Adv Mater ; 30(18): e1707508, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575107

RESUMO

Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub-cells, two NFAs named F-M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and narrow bandgap polymer PTB7-Th, respectively, the PBDB-T: F-M system exhibits a high Voc of 0.98 V and the PTB7-Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm-2 , which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm-2 , and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.

7.
Chem Commun (Camb) ; 52(72): 10894-7, 2016 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-27530274

RESUMO

A nickel-catalyzed, efficient C-N bond reduction of aromatic and benzylic ammonium triflates has been developed using sodium isopropoxide as a reducing agent. The high efficiency, mild conditions, and good compatibility with various substituents made this method an effective supplement to the current catalytic hydrogenation reactions. Combining this reductive deamination reaction with directed aromatic functionalization reactions, a powerful strategy for regioselective functionalization of arenes was demonstrated using dialkylamine groups as traceless directing groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA