Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Phytoremediation ; : 1-11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949210

RESUMO

Green synthesis of nanomaterials is advancing due to their ease of synthesis, cheapness, nontoxicity, and renewability. An environmentally friendly biogenic method has been developed for the green synthesis of nickel oxide nanoparticles (NiO NPs) using phytochemical-rich bioextract. They are rich in bioextract phenolics, flavonoids, and berberine. These phytochemicals successfully reduce and stabilize NiNO3 into NiO NPs. In this study, NiO NPs were synthesized by the green synthesis method from Lupinus Albus. Characterization of NiO NPs was carried out by TEM, XRD, SEM, UV, XRF, BET, and EDX analyses. According to XRD analysis, TEM results also support this, where the NiO NPs particle size diameter is 5 nm. It was determined by the Tauc equation that the band energy gap of NiO NPs is 1.69 eV. It was determined that the BET surface area of NiO NPs was 49.6 m2/g. NiO nanoparticles synthesized from Lupinus Albus extract by the green synthesis method were used as catalysts in the photocatalytic reduction of methylene blue with NaBH4. In the photocatalytic reduction of methylene blue with NaBH4, it was determined that there was no color change in 48 h without a catalyst, and in the presence of NiO nanoparticle catalyst, methylene blue was reduced by 97% in 8 min. The kinetics of the photocatalytic reduction of methylene blue with NaBH4 is a pseudo-first-order kinetic model and the kinetic rate constant is determined as 0.66 min-1, indicating that the catalytic effect of NiO NPs is very high at this value. NiO NPs were used five times in the photocatalytic reduction of methylene blue with NaBH4 and it was determined that the reduction of methylene blue was over 90% in each use.


NiO nanoparticles were synthesized from Lupinus Albus extract by green synthesis, which is an easily applied, cost-effective, and environmentally friendly method. The synthesized NiO nanoparticles were characterized using various characterization techniques. NiO nanoparticles have a high catalytic effect in the photocatalytic reduction of methylene blue with NaBH4. Photocatalytic reduction of methylene blue with uncatalyzed NaBH4 could not be achieved, and 97% reduction of methylene blue was completed in 8 min in the presence of NiO nanoparticle catalyst.

2.
Am J Dermatopathol ; 43(8): 554-555, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055537

RESUMO

ABSTRACT: "Severe acute respiratory syndrome coronavirus-2" (SARS-CoV-2) infection has variable described dermatologic manifestations. "COVID (coronavirus disease) toes" became a hallmark of the disease in young and largely asymptomatic patients, who may have negative test results for SARS-CoV-2. Pernio (chilblains)-like lesions are seen mostly in infected pediatric patients and are purple painful, frequently bilateral, ill-defined plaques with prominent inflammation on histological examination. In contrast to pernio-like presentation in children, critically ill adult patients with SARS-CoV-2 develop "purple" digits that may be sharply demarcated and may demonstrate asymmetric areas of ischemia. These 2 contrasting entities are sometimes grouped together as "COVID toes" due to some similarities in clinical appearance and presentation. Here, we summarize histopathologic examination from an autopsy, including the cutaneous lesions from the affected and normal contralateral toes and correlate them with systemic findings. In contrast to pernio-like lesions, the skin of the affected necrotic toes contained thrombi in vessels without prominent inflammation, suggestive of an embolic event. This is further supported by the clinical history of and autopsy findings of popliteal artery thrombus and multiple subsegmental pulmonary emboli. Our findings suggest that critically ill patients with SARS-CoV-2 have different pathological processes affecting skin at peripheral sites (ie, fingers, toes, ears, and nose), which may be due to thromboembolic events. The skin is a mirror of the body and skin pathology may shed light into overall pathogenesis of systemic illness and processes.


Assuntos
COVID-19/complicações , COVID-19/patologia , Trombose/virologia , Dedos do Pé/patologia , Autopsia , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Dedos do Pé/irrigação sanguínea
4.
Crit Rev Biotechnol ; 36(3): 482-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25600463

RESUMO

Cell and enzyme immobilization are often used for industrial production of high-value products. In recent years, immobilization techniques have been applied to the production of value-added chemicals such as 1,3-Propanediol (1,3-PDO). Biotechnological fermentation is an attractive alternative to current 1,3-PDO production methods, which are primarily thermochemical processes, as it generates high volumetric yields of 1,3-PDO, is a much less energy intensive process, and generates lower amounts of environmental organic pollutants. Although several approaches including: batch, fed-batch, continuous-feed and two-step continuous-feed were tested in suspended systems, it has been well demonstrated that cell immobilization techniques can significantly enhance 1,3-PDO production and allow robust continuous production in smaller bioreactors. This review covers various immobilization methods and their application for 1,3-PDO production.


Assuntos
Reatores Biológicos , Células Imobilizadas , Microbiologia Industrial , Propilenoglicóis/metabolismo , Biocombustíveis , Fermentação , Glicerol
5.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35446789

RESUMO

Respiratory failure in COVID-19 is characterized by widespread disruption of the lung's alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18-92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased perialveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there was also progressive loss of T2AE cells with increasing age, which may increase susceptibility to COVID-19-mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that expressed distinctly high levels of T cell activation and costimulation genes and strongly correlated with increased extent of alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results show that T2AE cell deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection, and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Lesão Pulmonar Aguda/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Autopsia , Humanos , Pulmão/patologia , Pessoa de Meia-Idade , Adulto Jovem
6.
Front Immunol ; 12: 730438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111151

RESUMO

Lymph node (LN)-resident stromal cells play an essential role in the proper functioning of LNs. The stromal compartment of the LN undergoes significant compensatory changes to produce a milieu amenable for regulation of the immune response. We have identified a distinct population of leptin receptor-expressing (LepR+) stromal cells, located in the vicinity of the high endothelial venules (HEVs) and lymphatics. These LepR+ stromal cells expressed markers for fibroblastic reticular cells (FRCs), but they lacked markers for follicular dendritic cells (FDCs) and marginal reticular cells (MRCs). Leptin signaling deficiency led to heightened inflammatory responses within the LNs of db/db mice, leakiness of HEVs, and lymphatic fragmentation. Leptin signaling through the JAK/STAT pathway supported LN stromal cell survival and promoted the anti-inflammatory properties of these cells. Conditional knockout of the LepR+ stromal cells in LNs resulted in HEV and extracellular matrix (ECM) abnormalities. Treatment of ob/ob mice with an agonist leptin fusion protein restored the microarchitecture of LNs, reduced intra-LN inflammatory responses, and corrected metabolic abnormalities. Future studies are needed to study the importance of LN stomal cell dysfunction to the pathogenesis of inflammatory responses in type 2 diabetes (T2D) in humans.


Assuntos
Linfonodos/metabolismo , Receptores para Leptina/metabolismo , Células Estromais/metabolismo , Animais , Linhagem Celular , Células Dendríticas Foliculares/metabolismo , Endotélio/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Imunidade/fisiologia , Inflamação/metabolismo , Vasos Linfáticos/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Vênulas/metabolismo
7.
Front Reprod Health ; 2: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36304708

RESUMO

Endometriosis is a chronic inflammatory disorder characterized by the presence of endometrial-like tissue growing outside of the uterus. Although the cause is unknown, retrograde menstruation leads to deposition of endometrial cells into the peritoneal cavity. Lack of disease recognition and long diagnostic delays (6-10 years) lead to substantial personal, social and financial burdens, as well as delayed treatment. A non-invasive diagnostic for endometriosis is a major unmet clinical need. Here, we assessed whether differences in menstrual effluent-derived stromal fibroblast cells (ME-SFCs) from women with and without endometriosis provide the basis for a non-invasive diagnostic for endometriosis. In addition, we investigated whether treatment of control ME-SFCs with inflammatory cytokines (TNF and IL-1ß) could induce an endometriosis-like phenotype. ME-SFCs from laparoscopically diagnosed endometriosis patients exhibit reduced decidualization capacity, measured by IGFBP1 production after exposure to cAMP. A receiver operating characteristic (ROC) curve developed using decidualization data from controls and endometriosis subjects yielded an area under the curve of 0.92. In addition, a significant reduction in ALDH1A1 gene expression and increased podoplanin surface expression were also observed in endometriosis ME-SFCs when compared to control ME-SFCs. These endometriosis-like phenotypes can be reproduced in control ME-SFCs by exposure to inflammatory cytokines (TNF and IL-1ß) and are associated with increased cell migration. These results are consistent with the hypothesis that chronic intrauterine inflammation influences the development of endometriosis lesions following retrograde menstruation. In conclusion, the analysis of ME-SFCs can provide an accurate, rapid, and non-invasive diagnostic for endometriosis and insight into disease pathogenesis.

8.
Am J Clin Pathol ; 154(6): 748-760, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32876680

RESUMO

OBJECTIVES: Although diffuse alveolar damage, a subtype of acute lung injury (ALI), is the most common microscopic pattern in coronavirus disease 2019 (COVID-19), other pathologic patterns have been described. The aim of the study was to review autopsies from COVID-19 decedents to evaluate the spectrum of pathology and correlate the results with clinical, laboratory, and radiologic findings. METHODS: A comprehensive and quantitative review from 40 postmortem examinations was performed. The microscopic patterns were categorized as follows: "major" when present in more than 50% of cases and "novel" if rarely or not previously described and unexpected clinically. RESULTS: Three major pulmonary patterns were identified: ALI in 29 (73%) of 40, intravascular fibrin or platelet-rich aggregates (IFPAs) in 36 (90%) of 40, and vascular congestion and hemangiomatosis-like change (VCHL) in 20 (50%) of 40. The absence of ALI (non-ALI) was novel and seen in 11 (27%) of 40. Compared with ALI decedents, those with non-ALI had a shorter hospitalization course (P = .02), chest radiographs with no or minimal consolidation (P = .01), and no pathologically confirmed cause of death (9/11). All non-ALI had VCHL and IFPAs, and clinically most had cardiac arrest. CONCLUSIONS: Two distinct pulmonary phenotypic patterns-ALI and non-ALI-were noted. Non-ALI represents a rarely described phenotype. The cause of death in non-ALI is most likely COVID-19 related but requires additional corroboration.


Assuntos
Infecções por Coronavirus/patologia , Pulmão/patologia , Pneumonia Viral/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Betacoronavirus , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
11.
Exp Clin Transplant ; 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619908

RESUMO

OBJECTIVES: Sexually transmitted diseases, which may be asymptomatic, have the potential to cause serious health problems in renal transplant recipients. The aim of this study was to determine the prevalence of sexually transmitted diseases in sexually active asymptomatic renal transplant patients by using real-time multiplex polymerase chain reaction assays. MATERIALS AND METHODS: This prospective controlled study was conducted between November 2016 and January 2017 in our hospital. Our study group included 80 consecutive, sexually active asymptomatic patients (40 men and 40 women) who had undergone renal transplant in our hospital and who presented to our outpatient clinic for routine follow-up. We also included a control group of 80 consecutive, sexually active nontransplant patients (40 men and 40 women). All patient samples were tested for Gardnerella vaginalis and obligate anaerobes (Prevotella bivia, Porphyromonas species), Candida species, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma species, Trichomonas vaginalis, Neisseria gonorrhoeae, Chlamydia trachomatis, herpes simplex virus 1 and 2, and Cytomegalovirus by real-time multiplex polymerase chain reaction. RESULTS: The prevalences of infection with Gardnerella vaginalis and obligate anaerobes (P = .043), Ureaplasma species (P = .02), and Cytomegalovirus (P = .016) were found to be significantly higher in the study group versus the control group. However, there was no difference between the 2 groups regarding the prevalence of Mycoplasma infection (P = .70). CONCLUSIONS: Sexually transmitted diseases may occur more frequently in sexually active asymptomatic renal transplant recipients than in nontransplanted individuals. Real-time multiplex polymerase chain reaction analysis may be a suitable method for determining these pathogens.

12.
Sci Rep ; 8(1): 2461, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410442

RESUMO

Ischemia reperfusion injuries (IRI) are unavoidable in solid organ transplantation. IRI augments alloimmunity but the mechanisms involved are poorly understood. Herein, we examined the effect of IRI on antigen specific alloimmunity. We demonstrate that ischemia promotes alloimmune activation, leading to more severe histological features of rejection, and increased CD4+ and CD8+ T cell graft infiltration, with a predominantly CD8+ IFNγ+ infiltrate. This process is dependent on the presence of alloreactive CD4+ T cells, where depletion prevented infiltration of ischemic grafts by CD8+ IFNγ+ T cells. IL-6 is a known driver of ischemia-induced rejection. Herein, depletion of donor antigen-presenting cells reduced ischemia-induced CD8+ IFNγ+ allograft infiltration, and improved allograft outcomes. Following prolonged ischemia, accelerated rejection was observed despite treatment with CTLA4Ig, indicating that T cell costimulatory blockade failed to overcome the immune activating effect of IRI. However, despite severe ischemic injury, treatment with anti-IL-6 and CTLA4Ig blocked IRI-induced alloimmune injury and markedly improved allograft survival. We describe a novel pathway where IRI activates innate immunity, leading to upregulation of antigen specific alloimmunity, resulting in chronic allograft injury. Based on these findings, we describe a clinically relevant treatment strategy to overcome the deleterious effect of IRI, and provide superior long-term allograft outcomes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , Interleucina-6/imunologia , Traumatismo por Reperfusão Miocárdica/imunologia , Abatacepte/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/fisiopatologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/farmacologia , Interferon gama/antagonistas & inibidores , Interferon gama/genética , Interferon gama/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transdução de Sinais , Transplante Heterotópico , Transplante Homólogo
13.
Acta Clin Croat ; 54(4): 395-401, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27017711

RESUMO

Renal ischemia-reperfusion directly affects glomerular and tubular epithelium. Oxygen free radicals have a significant part in the pathophysiology of renal ischemia-reperfusion injury. The present study aimed to identify the effects of 3-week zinc, melatonin, and zinc + melato- nin supplementation on malondialdehyde (MDA) levels in tissue and plasma and glutathione levels (GSH) in erythrocytes and tissue of rats with experimentally induced renal ischemia-reperfusion injury. The study included Wistar albino rats with a mean weight of 250 g. Study groups were formed as follows: control, sham-control, ischemia + reperfusion, zinc + ischemia-reperfusion, melatonin + ischemia-reperfusion, and zinc + melatonin + ischemia-reperfusion. Animals were supplemented with zinc and melatonin 3 mg/kg/day i.p. for 3 weeks before the induction of ischemia-reperfusion. Renal ischemia-reperfusion was induced in the left kidney under general anesthesia and consisted of ischemia for 45 minutes and reperfusion for 1 hour. After the procedure, animals were sacrificed and blood and kidney samples were collected to analyze MDA and GSH levels. GSH values in kidney tissues and erythrocytes were found to be elevated in the groups supplemented with zinc and melatonin (p < 0.005). When MDA values in renal tissue and plasma were examined, it was seen that ischemia significantly elevated this parameter, while zinc and melatonin supplementation signifi- cantly inhibited MDA values (p < 0.002). The results of the study indicated that oxidative injury of the blood and renal tissues of rats increased in association with ischemia-reperfusion, but zinc and melatonin supplementation before ischemia-reperfusion markedly reduced this oxidative damage.


Assuntos
Antioxidantes/farmacologia , Rim/irrigação sanguínea , Melatonina/farmacologia , Oxirredução , Traumatismo por Reperfusão/prevenção & controle , Zinco/farmacologia , Animais , Radicais Livres , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Malondialdeído/metabolismo , Melatonina/administração & dosagem , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Zinco/administração & dosagem
15.
J Proteomics ; 125: 131-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26025879

RESUMO

On average, the oxidation of a single Met residue to Mso (methionine S-oxide, methionine sulfoxide) and Msn (methionine S,S-dioxide, methionine sulfone) decreases peptide retention in RP HPLC by 2.37 and 1.95 Hydrophobicity Index units (% acetonitrile), respectively. At the same time, the magnitude of the retention shift varies greatly (-9.1 to +0.4% acetonitrile for Mso) depending on peptide sequence. The latter effects are mostly associated with the stabilization of secondary structures upon peptide interaction with the hydrophobic stationary phase: when an oxidized residue is located in the hydrophobic face of an amphipathic helix, the decrease in retention is profound. The same amino acid positioning leads to complete or partial resolution of pairs of peptides containing diastereomeric Mso residues. Contrary to all previously reported observations, and the nature of this modification, we also demonstrate for the first time that methionine oxidation may increase peptide hydrophobicity. This behavior is characteristic for Met residues in the N3 position of an N-capping box stabilization motif prior to the amphipathic helix. All these findings indicate that the prediction of peptide secondary structures upon interaction with hydrophobic surfaces must become an integral part of peptide retention modeling in proteomic applications going forward.


Assuntos
Metionina/análogos & derivados , Peptídeos/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metionina/química , Proteômica/métodos
16.
AMB Express ; 4: 63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401066

RESUMO

Higher initial glycerol loadings (620 mM) have a negative effect on growth and 1,3-propanediol (1,3-PDO) synthesis in Clostridium butyricum DSM 10702 relative to lower initial glycerol concentrations (170 mM). To help understand metabolic shifts associated with elevated glycerol, protein expression levels were quantified by LC/MS/MS analyses. Thirty one (31) proteins involved in conversion of glycerol to 1,3-PDO and other by-products were analyzed by multiple reaction monitoring (MRM). The analyses revealed that high glycerol concentrations reduced cell growth. The expression levels of most proteins in glycerol catabolism pathways were down-regulated, consistent with the slower growth rates observed. However, at high initial glycerol concentrations, some of the proteins involved in the butyrate synthesis pathways such as a putative ethanol dehydrogenase (CBY_3753) and a 3-hydroxybutyryl-CoA dehydrogenase (CBY_3045) were up-regulated in both exponential and stationary growth phases. Expression levels of proteins (CBY_0500, CBY_0501 and CBY_0502) involved in the reductive pathway of glycerol to 1,3-PDO were consistent with glycerol consumption and product concentrations observed during fermentation at both glycerol concentrations, and the molar yields of 1,3-PDO were similar in both cultures. This is the first report that correlates expression levels of glycerol catabolism enzymes with synthesis of 1,3-PDO in C. butyricum. The results revealed that significant differences in the expression of a small subset of proteins were observed between exponential and stationary growth phases at both low and high glycerol concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA