Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(8): 8874-8889, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39194741

RESUMO

Soil salinization/alkalization is a complex environmental factor that includes not only neutral salt NaCl but also other components like Na2CO3. miRNAs, as small molecules that regulate gene expression post-transcriptionally, are involved in plant responses to abiotic stress. In this study, maize seedling roots were treated for 5 h with 100 mM NaCl, 50 mM Na2CO3, and H2O, respectively. Sequencing analysis of differentially expressed miRNAs under these conditions revealed that the Na2CO3 treatment group had the most differentially expressed miRNAs. Cluster analysis indicated their main involvement in the regulation of ion transport, binding, metabolism, and phenylpropanoid and flavonoid biosynthesis pathways. The unique differentially expressed miRNAs in the NaCl treatment group were related to the sulfur metabolism pathway. This indicates a significant difference in the response patterns of maize to different treatment groups. This study provides theoretical evidence and genetic resources for further analysis of the molecular mechanisms behind maize's salt-alkali tolerance.

2.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273633

RESUMO

The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Cromossomos de Plantas/genética , Mapeamento Cromossômico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell Rep ; 43(1): 18, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148416

RESUMO

KEY MESSAGE: Editing ZmGA20ox3 can achieve the effect similar to applying Cycocel, which can reduce maize plant height and enhance stress resistance. Drought stress, a major plant abiotic stress, is capable of suppressing crop yield performance severely. However, the trade-off between crop drought tolerance and yield performance turns out to be significantly challenging in drought-resistant crop breeding. Several phytohormones [e.g., gibberellin (GA)] have been reported to play a certain role in plant drought response, which also take on critical significance in plant growth and development. In this study, the loss-of-function mutations of GA biosynthesis enzyme ZmGA20ox3 were produced using the CRISPR-Cas9 system in maize. As indicated by the result of 2-year field trials, the above-mentioned mutants displayed semi-dwarfing phenotype with the decrease of GA1, and almost no yield loss was generated compared with wild-type (WT) plants. Interestingly, as revealed by the transcriptome analysis, differential expressed genes (DEGs) were notably enriched in abiotic stress progresses, and biochemical tests indicated the significantly increased ABA, JA, and DIMBOA levels in mutants, suggesting that ZmGA20ox3 may take on vital significance in stress response in maize. The in-depth analysis suggested that the loss function of ZmGA20ox3 can enhance drought tolerance in maize seedling, reduce Anthesis-Silking Interval (ASI) delay while decreasing the yield loss significantly in the field under drought conditions. The results of this study supported that regulating ZmGA20ox3 can improve plant height while enhancing drought resistance in maize, thus serving as a novel method for drought-resistant genetic improvement in maize.


Assuntos
Resistência à Seca , Edição de Genes , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
4.
Transgenic Res ; 28(5-6): 589-599, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31595387

RESUMO

During the Green Revolution in the 1960s, breeding dwarf cultivars turned out to be a landmark, leading to a significant increase in the global production of wheat and rice. The most direct and effective strategy for breeding dwarf crops, among others, would be to control endogenous gibberellin (GA) levels of the crops. GA 2-oxidases are a group of 2-oxoglutarate-dependent dioxygenases that catalyze the deactivation of bioactive GAs. The ArabidopsisAtGA2ox1 gene was transformed into maize with the aim of obtaining a height-reduced GM maize. The characterization of the GM maize revealed that the highest plant height reduction was accomplished by a 74% decline in GA1 level, and by approximately twofold increases in both chlorophyll content and root/shoot ratio over the wild-type (WT). Interestingly, the stem cells of the GM maize were condensed, and the typical vascular bundle structure was found to be deformed. Based on a 2-season field trial, the GM maize exhibited a higher harvest index (9-17%) and grain yield (10-14%) than the WT. The current results suggest that a modulation of the endogenous GA level would be a sensible approach for improving the crop architecture and grain yield in maize.


Assuntos
Arabidopsis/genética , Giberelinas/metabolismo , Oxigenases de Função Mista/genética , Zea mays/genética , Proteínas de Arabidopsis/genética , Cruzamento , Dioxigenases/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Triticum/genética , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
5.
J Integr Plant Biol ; 60(6): 465-480, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29319223

RESUMO

Flowering time is a trait vital to the adaptation of flowering plants to different environments. Here, we report that CCT domain genes play an important role in flowering in maize (Zea mays L.). Among the 53 CCT family genes we identified in maize, 28 were located in flowering time quantitative trait locus regions and 15 were significantly associated with flowering time, based on candidate-gene association mapping analysis. Furthermore, a CCT gene named ZmCOL3 was shown to be a repressor of flowering. Overexpressing ZmCOL3 delayed flowering time by approximately 4 d, in either long-day or short-day conditions. The absence of one cytosine in the ZmCOL3 3'UTR and the presence of a 551 bp fragment in the promoter region are likely the causal polymorphisms contributing to the maize adaptation from tropical to temperate regions. We propose a modified model of the maize photoperiod pathway, wherein ZmCOL3 acts as an inhibitor of flowering either by transactivating transcription of ZmCCT, one of the key genes regulating maize flowering, or by interfering with the circadian clock.


Assuntos
Relógios Circadianos/genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Modelos Biológicos , Fotoperíodo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo Genético , Reprodutibilidade dos Testes , Transformação Genética
7.
J Colloid Interface Sci ; 674: 225-237, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936079

RESUMO

The rational design of Z-scheme heterojunction hybrid photocatalysts is considered a promising way to achieve high photocatalytic activity. In this study, a dual Z-scheme heterojunction with bismuth sulfide (Bi2S3) nanorods and bismuth oxide (Bi2O3) nanoparticles anchored Sulfur-doped carbon nitride (S-CN) nanotubes (Bi2S3/S-CN/Bi2O3) is designed and fabricated through the ordinal metal ion adsorption, pyrolysis, and sulfidation processes using supramolecular rods as precursor. Compared with pristine Bi2S3, Bi2O3, and CN, the dual Z-scheme tube-shaped Bi2S3/S-CN/Bi2O3 catalyst exhibited a significantly improved photocatalytic activity in amine oxidation. The optimized Bi2S3/S-CN/Bi2O3 nanostructure exhibits a 97.6 % benzylamine conversion and 99.4 % imine selectivity within 4 h under simulated solar light irradiation. The excellent activity of Bi2S3/S-CN/Bi2O3 nanotubes can be attributed to the characteristic hollow defect band structure and efficient charge separation and transfer achieved by the dual Z-scheme charge transfer mechanism, which was systematically studied using electron spin resonance spectroscopy, Kelvin probe force microscope, and other techniques. The optimized dual Z-scheme heterojunction hybrid photocatalyst maintains the high oxidizing ability of Bi2S3 and Bi2O3 and the excellent reducing ability of CN, thereby significantly enhancing the photocatalytic activity. This research provides a facile and feasible synthesis strategy for designing dual Z-scheme heterojunctions with defect band structure to improve the photocatalytic activity.

8.
J Colloid Interface Sci ; 650(Pt B): 1339-1349, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478751

RESUMO

Hollow structure hybrids have gained considerable attention for their ability to reduce CO2 owing to their rich active sites, high gas adsorption ability, and excellent light utilization capacity. Herein, a template-engaged strategy was provided to fabricate copper sulphide@cerium dioxide (CuS@CeO2) p-n heterojunction hollow cube photocatalysts using Cu2O cubes as a sacrificial template. The sequential steps of loading of CeO2 nanolayer, sulfidation, and etching reaction facilitate the formation of CuS@CeO2 p-n heterojunction hollow cubes. Compared with the single CuS, CeO2, and their physical mixture, the CuS@CeO2 p-n heterojunction hollow cube photocatalyst expresses a higher performance toward photocatalytic CO2 reduction under solid-gas reaction conditions due to the faster separation of photogenerated charges. The further enhanced performance of CuS@CeO2 p-n heterojunction hollow cubes was achieved by decorating pt nanoparticles due to the fact that Pt nanoparticles had a high electron affinity and CO2 adsorption capacity, and the highest CO and CH4 yields of the optimized hybrid reached 195.8 µmol g-1 h-1 and 19.96 µmol g-1 h-1, respectively. This work might provide a strategy for designing and synthesizing efficient hollow heterostructured photocatalysts for solar energy conversion and utilization.

9.
PeerJ ; 11: e16254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920843

RESUMO

Armadillo (ARM) was a gene family important to plants, with crucial roles in regulating plant growth, development, and stress responses. However, the properties and functions of ARM family members in maize had received limited attention. Therefore, this study employed bioinformatics methods to analyze the structure and evolution of ARM-repeat protein family members in maize. The maize (Zea mays L.) genome contains 56 ARM genes distributed over 10 chromosomes, and collinearity analysis indicated 12 pairs of linkage between them. Analysis of the physicochemical properties of ARM proteins showed that most of these proteins were acidic and hydrophilic. According to the number and evolutionary analysis of the ARM genes, the ARM genes in maize can be divided into eight subgroups, and the gene structure and conserved motifs showed similar compositions in each group. The findings shed light on the significant roles of 56 ZmARM domain genes in development and abiotic stress, particularly drought stress. RNA-Seq and qRT-PCR analysis revealed that drought stress exerts an influence on specific members of the ZmARM family, such as ZmARM4, ZmARM12, ZmARM34 and ZmARM36. The comprehensive profiling of these genes in the whole genome, combined with expression analysis, establishes a foundation for further exploration of plant gene function in the context of abiotic stress and reproductive development.


Assuntos
Perfilação da Expressão Gênica , Zea mays , Zea mays/genética , Regiões Promotoras Genéticas , Proteínas de Plantas/genética , Estresse Fisiológico/genética
10.
Plant Commun ; 4(3): 100473, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36642074

RESUMO

Phenotypic plasticity is the ability of a given genotype to produce multiple phenotypes in response to changing environmental conditions. Understanding the genetic basis of phenotypic plasticity and establishing a predictive model is highly relevant to future agriculture under a changing climate. Here we report findings on the genetic basis of phenotypic plasticity for 23 complex traits using a diverse maize population planted at five sites with distinct environmental conditions. We found that latitude-related environmental factors were the main drivers of across-site variation in flowering time traits but not in plant architecture or yield traits. For the 23 traits, we detected 109 quantitative trait loci (QTLs), 29 for mean values, 66 for plasticity, and 14 for both parameters, and 80% of the QTLs interacted with latitude. The effects of several QTLs changed in magnitude or sign, driving variation in phenotypic plasticity. We experimentally validated one plastic gene, ZmTPS14.1, whose effect was likely mediated by the compensation effect of ZmSPL6 from a downstream pathway. By integrating genetic diversity, environmental variation, and their interaction into a joint model, we could provide site-specific predictions with increased accuracy by as much as 9.9%, 2.2%, and 2.6% for days to tassel, plant height, and ear weight, respectively. This study revealed a complex genetic architecture involving multiple alleles, pleiotropy, and genotype-by-environment interaction that underlies variation in the mean and plasticity of maize complex traits. It provides novel insights into the dynamic genetic architecture of agronomic traits in response to changing environments, paving a practical way toward precision agriculture.


Assuntos
Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fenótipo , Locos de Características Quantitativas/genética , Genótipo , Agricultura
11.
Nat Genet ; 55(1): 144-153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581701

RESUMO

Networks are powerful tools to uncover functional roles of genes in phenotypic variation at a system-wide scale. Here, we constructed a maize network map that contains the genomic, transcriptomic, translatomic and proteomic networks across maize development. This map comprises over 2.8 million edges in more than 1,400 functional subnetworks, demonstrating an extensive network divergence of duplicated genes. We applied this map to identify factors regulating flowering time and identified 2,651 genes enriched in eight subnetworks. We validated the functions of 20 genes, including 18 with previously unknown connections to flowering time in maize. Furthermore, we uncovered a flowering pathway involving histone modification. The multi-omics integrative network map illustrates the principles of how molecular networks connect different types of genes and potential pathways to map a genome-wide functional landscape in maize, which should be applicable in a wide range of species.


Assuntos
Proteômica , Zea mays , Zea mays/genética , Multiômica , Genômica , Genes de Plantas
12.
Sci Rep ; 12(1): 12529, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869123

RESUMO

The insecticidal crystalline proteins (Crys) are a family of insect endotoxin functioning in crop protection. As insects keep evolving into tolerance to the existing Crys, it is necessary to discover new Cry proteins to overcome potential threatens. Crys possess three functional domains at their N-termini, and the most active region throughout evolution was found at the domain-III. We swapped domain-IIIs from various Cry proteins and generated seven chimeric proteins. All recombinants were expressed in Escherichia coli and their toxicity was assessed by dietary exposure assays. Three of the seven Crys exhibited a high toxicity to Asian corn borer over the controls. One of them, Cry1Ab-Gc, a chimeric Cry1Ab being replaced with the domain-III of Cry1Gc, showed the highest toxicity to rice stem borer when it was over-expressed in Oryza sativa. Furthermore, it was also transformed into maize, backcrossed into commercial maize inbred lines and then produced hybrid to evaluate their commercial value. Transgenic maize performed significant resistance to the Asian corn borer without affecting the yield. We further showed that this new protein did not have adverse effects on the environment. Our results indicated that domain III swapped of Crys could be used as an efficient method for developing new engineered insecticidal protein.


Assuntos
Bacillus thuringiensis , Inseticidas , Oryza , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo , Zea mays/genética , Zea mays/metabolismo
13.
Nat Genet ; 54(11): 1736-1745, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266506

RESUMO

Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Adaptação Fisiológica/genética , Sequência de Bases , Alelos , Variação Genética/genética
14.
Front Plant Sci ; 11: 504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411170

RESUMO

Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.

15.
J Mol Recognit ; 22(6): 474-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19533627

RESUMO

Arabidopsis ethylene responsive element binding factors (AtERFs) form a transcription factor super family. While the functions of most AtERFs are unknown, a number of AtERFs appear to be involved in regulation of stress-related genes through their DNA binding domains (DBD), namely ERF domains, which recognize a consensus motif GCC-box at the regulatory region. In this study, molecular dynamics simulations were performed on the four ERF domain-GCC-box complexes, AtERF1, AtERF4, AtEBP and CFBF1, to determine disparity in specific binding to the GCC-box by the AtERFs. Our results suggested that three amino acid residues Arg29, Glu39 and Arg41, played a vital role in direct readout of DNA. The position of the consensus sequence GCCGCC has an intrinsic disparity on binding with ERF domains. The third C, fourth G and the last C in the GCC motif was compulsory for recognition by ERF domains. Our results provide structural evidence for a sequence-dependent recognition mechanism for AtERFs.


Assuntos
Arabidopsis/genética , Fatores de Transcrição/genética , Algoritmos , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , DNA/química , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fatores de Tempo
16.
J Proteomics ; 114: 274-86, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25449830

RESUMO

The 14-3-3 proteins are a group of regulatory proteins of divergent functions in plants. However, little is known about their roles in maize kernel development. Using publically available gene expression profiling data, we found that two 14-3-3 species genes, zmgf14-4 and zmgf14-6, exhibited prominent expression profiles over other 14-3-3 protein genes during maize kernel development. More than 5000 transcripts of these two genes were identified accounting for about 1/10 of the total transcripts of genes correlating to maize kernel development. We constructed a proteomics pipeline based on the affinity chromatography, in combination with 2-DE and LC-MS/MS technologies to identify the specific client proteins of the two proteins for their functional characterization. Consequently, we identified 77 specific client proteins from the developing kernels of the inbred maize B73. More than 60% of the client proteins were commonly affinity-identified by the two 14-3-3 species and are predicted to be implicated in the fundamental functions of metabolism, protein destination and storage. In addition, we found ZmGF14-4 specifically bound to the disease- or defense-relating proteins, whilst ZmGF14-6 tended to interact with the proteins involving metabolism and cell structure. Our findings provide primary insights into the functional roles of 14-3-3 proteins in maize kernel development. BIOLOGICAL SIGNIFICANCE: Maize kernel development is a complicated physiological process for its importance in both genetics and cereal breeding. 14-3-3 proteins form a multi-gene family participating in regulations of developmental processes in plants. However, the correlation between this protein family and maize kernel development has hardly been studied. We have for the first time found 12 14-3-3 protein genes from maize genome and studied in silico the gene transcription profiling of these genes. Comparative studies revealed that maize kernel development aroused a great number of gene expression, among which 14-3-3 protein genes took a significant proportion. We applied affinity chromatographic approach, in combination with 2-DE and LC-MS/MS, to explore the specific client proteins of two crucial 14-3-3 protein species that exhibit prominent gene expression over other members in the family during the kernel development. Assessments of the identified client proteins resulted in important information toward understanding the functional mechanism of 14-3-3 protein family in maize kernel development.


Assuntos
Proteínas 14-3-3/fisiologia , Proteínas de Plantas/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Proteínas 14-3-3/análise , Proteínas 14-3-3/metabolismo , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Zea mays/genética
17.
PLoS One ; 6(8): e23342, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858078

RESUMO

CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys-trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Simulação de Dinâmica Molecular , Nicotina/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico/genética , Simulação por Computador , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Nicotina/metabolismo , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Plant Mol Biol ; 69(1-2): 167-78, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18931920

RESUMO

Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis of the transcription factor binding site (TFBS) contexts and machine learning approach. Using this strategy, we conducted a genome-wide investigation into novel direct target genes of dehydration responsive element binding proteins (DREBs), the members of AP2-EREBPs transcription factor super family which is reported to be responsive to various abiotic stresses in Arabidopsis. The genome-wide searching yielded in total 474 target gene candidates. With reference to the microarray data for abiotic stresses-inducible gene expression profile, 268 target gene candidates out of the total 474 genes predicted, were induced during the 24-h exposure to abiotic stresses. This takes about 57% of total predicted targets. Furthermore, GO annotations revealed that these target genes are likely involved in protein amino acid phosphorylation, protein binding and Endomembrane sorting system. The results suggested that the predicted target gene candidates were adequate to meet the essential biological principle of stress-resistance in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta , Água/metabolismo , Arabidopsis/metabolismo , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA