Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 10014-10022, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557129

RESUMO

Direct oxidation of methane to methanol was reported to be highly dependent on the transition- or noble-metal-loading catalysts in the past decades. Here, we show that the transition-metal-free aluminosilicate ferrierite (FER) zeolite effectively catalyzed methane and N2O to methanol for the first time. The distorted tetracoordinated Al in the framework and pentacoordinated Al on the extra framework formed during calcination, activation, and reaction processes were confirmed as the potential active centers. The possible reaction pathway similar to the Fe-containing zeolites was advocated based on the reaction results using different oxidants, N2O adsorption FTIR spectra, and 27Al MAS NMR spectra. The stable and efficient methanol production capacity of FER zeolite was ascribed to the two-dimensional straight channels and its distinctive Al distribution of FER zeolite (CP914C) from Zeolyst. The transition-metal-free FER zeolite performed better than the record in the literature and our recent results using transition-metal-containing catalysts in terms of selectivity and formation rate of methanol and stability. This work has great significance and prospects for utilizing CH4 and N2O as resources and will open new avenues for methane oxidation.

2.
J Am Chem Soc ; 145(31): 17284-17291, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489934

RESUMO

Germanosilicate zeolites with various structures have been extensively synthesized, but the syntheses of corresponding zeolite structures in the absence of germanium species remain a challenge. One such example is an ITR zeolite structure, which is a twin of the ITH zeolite structure. Through the modification of a classic organic template for synthesizing ITH zeolites and thus designing a new organic template with high compatibility to ITR zeolite assisted by theoretical simulation, we, for the first time, show the Ge-free synthesis of an ITR structure including pure silica, aluminosilicate, and borosilicate ITR zeolites. These materials have high crystallinity, corresponding to an ITR content of more than 95%. In the methanol-to-propylene (MTP) reaction, the obtained aluminosilicate ITR zeolite exhibits excellent propylene selectivity and a long lifetime compared with conventional aluminosilicate ZSM-5 zeolite. The strategy for the design of organic templates might offer a new opportunity for rational syntheses of novel zeolites and, thus, the development of highly efficient zeolite catalysts in the future.

3.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630270

RESUMO

(-)-Epigallocatechin gallate (EGCG) is a bioactive component of green tea that provides many health benefits. However, excessive intake of green tea may cause adverse effects of caffeine (CAF) since green tea (30-50 mg) has half the CAF content of coffee (80-100 mg). In this work, for enhancing the health benefits of green tea, natural rubber/hexagonal mesoporous silica (NR/HMS) nanocomposites with tunable textural properties were synthesized using different amine template sizes and applied as selective adsorbents to separate EGCG and CAF from green tea. The resulting adsorbents exhibited a wormhole-like silica framework, high specific surface area (528-578 m2 g-1), large pore volume (0.76-1.45 cm3 g-1), and hydrophobicity. The NR/HMS materials adsorbed EGCG more than CAF; the selectivity coefficient of EGCG adsorption was 3.6 times that of CAF adsorption. The EGCG adsorption capacity of the NR/HMS series was correlated with their pore size and surface hydrophobicity. Adsorption behavior was well described by a pseudo-second-order kinetic model, indicating that adsorption involved H-bonding interactions between the silanol groups of the mesoporous silica surfaces and the hydroxyl groups of EGCG and the carbonyl group of CAF. As for desorption, EGCG was more easily removed than CAF from the NR/HMS surface using an aqueous solution of ethanol. Moreover, the NR/HMS materials could be reused for EGCG adsorption at least three times. The results suggest the potential use of NR/HMS nanocomposites as selective adsorbents for the enrichment of EGCG in green tea. In addition, it could be applied as an adsorbent in the filter to reduce the CAF content in green tea by up to 81.92%.


Assuntos
Cafeína , Nanocompostos , Chá , Borracha , Adsorção , Dióxido de Silício
4.
Chemistry ; 28(72): e202202825, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36129172

RESUMO

Development of porous materials capable of capturing volatile organic compounds (VOCs), such as benzene and its derivatives, with high efficiency, selectivity, and reusability is highly demanded. Here we report unusual vapor adsorption behavior toward VOCs by a new porous solid, composed of a polyaromatic capsule bearing a spherical nanocavity with subnano-sized windows. Without prior crystallization and high-temperature vacuum drying, the porous polyaromatic solid exhibits the following five features: vapor adsorption of benzene over cyclohexane with 90 % selectivity, high affinity toward o-xylene over benzene and toluene with >80 % selectivity, ortho-selective adsorption ability (>50 %) from mixed xylene isomers, tight VOCs storage even under high temperature and vacuum conditions, and at least 5 times reusability for xylene adsorption. The observed adsorption abilities are accomplished at ambient temperature and pressure within 1 h, which has not been demonstrated by organic/inorganic porous materials reported previously.

5.
Chemistry ; 28(43): e202200875, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622449

RESUMO

Pb2 Ti2 O5.4 F1.2 modified with various metal cocatalysts was studied as a photocatalyst for visible-light H2 evolution. Although unmodified Pb2 Ti2 O5.4 F1.2 showed negligible activity, modification of its surface with Rh led to the best observed promotional effect among the Pb2 Ti2 O5.4 F1.2 samples modified with a single metal cocatalyst. The H2 evolution activity was further enhanced by coloading with Pd; the Rh-Pd/Pb2 Ti2 O5.4 F1.2 photocatalyst showed 3.2 times greater activity than the previously reported Pt/Pb2 Ti2 O5.4 F1.2 . X-ray absorption fine-structure spectroscopy, photoelectrochemical, and transient absorption spectroscopy measurements indicated that the coloaded Rh and Pd species, which were partially alloyed on the Pb2 Ti2 O5.4 F1.2 surface, improved the electron-capturing ability, thereby explaining the high activity of the coloaded Rh-Pd/Pb2 Ti2 O5.4 F1.2 catalyst toward H2 evolution.

6.
Inorg Chem ; 61(34): 13481-13496, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35976816

RESUMO

The construction of aluminosilicates from versatile molecular precursors (MPs) represents a promising alternative strategy to conventional processes based on monomeric molecular or polymeric Al and Si sources. However, the use of MPs often suffers from drawbacks such as the decomposition of the core structures in the presence of solvents, acids, or bases. In this work, we demonstrate a simple thermal synthesis of porous aluminosilicates from single-source spiro-7-type MPs that consist of a tetrahedral Al atom and six Si atoms functionalized with 12 phenyl (Ph) groups, (C+)[Al{Ph2Si(OSiPh2O)2}2]- (C+[AlSi6]-; C+ = pyridinium cation (PyH+), Na+, K+, Rb+, or Cs+), without using a solvent or activator. Microporous aluminosilicates synthesized via the thermal treatment of C+[AlSi6]- under a 79% N2 + 21% O2 atmosphere exhibited extremely low carbon contents (0.10-1.28%), together with Si/Al ratios of 3.9-6.7 ± 0.2 and surface areas of 103.1-246.3 m2/g. The solid-state 27Al and 29Si MAS NMR spectra suggest that the obtained aluminosilicates with alkali cations retain a tetrahedral Al site derived from the spiro-7-type core structure. After a proton-exchange reaction, the aluminosilicates showed almost 1.5 times higher reactivity in the catalytic ring-opening of styrene oxide than the aluminosilicate before proton exchange due to the catalytically active OH site being predominantly bridged by tetrahedral Al and Si atoms. These results suggest that the present MP strategy is a promising method for the introduction of key structures into active inorganic materials.

7.
Phys Chem Chem Phys ; 24(7): 4358-4365, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112119

RESUMO

MSE-type zeolites synthesized by different organic structure-directing agents (OSDAs), UZM-35 and MCM-68, were prepared. The location of Brønsted acid sites derived from the framework Al atoms and acidic properties were investigated based on 27Al MQMAS NMR and in situ IR techniques combined with the evaluation of the catalytic activity. We have successfully found a significant difference in the location of Brønsted acid sites in the MSE-type framework; 61 and 33% of acid sites were located at the 12-ring channel for MCM-68 and UZM-35, respectively. The differences in the location of the acid sites yielded their unique catalytic activities for the hydrocarbon cracking reactions, indicating that a well-chosen type of OSDAs for the synthesis is one of the possibilities for controlling the distribution of the framework Al atoms in the MSE-type framework.

8.
Angew Chem Int Ed Engl ; 61(26): e202204948, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35560974

RESUMO

Photocatalytic conversion of CO2 into transportable fuels such as formic acid (HCOOH) under sunlight is an attractive solution to the shortage of energy and carbon resources as well as to the increase in Earth's atmospheric CO2 concentration. The use of abundant elements as the components of a photocatalytic CO2 reduction system is important, and a solid catalyst that is active, recyclable, nontoxic, and inexpensive is strongly demanded. Here, we show that a widespread soil mineral, alpha-iron(III) oxyhydroxide (α-FeOOH; goethite), loaded onto an Al2 O3 support, functions as a recyclable catalyst for a photocatalytic CO2 reduction system under visible light (λ>400 nm) in the presence of a RuII photosensitizer and an electron donor. This system gave HCOOH as the main product with 80-90 % selectivity and an apparent quantum yield of 4.3 % at 460 nm, as confirmed by isotope tracer experiments with 13 CO2 . The present work shows that the use of a proper support material is another method of catalyst activation toward the selective reduction of CO2 .

9.
J Am Chem Soc ; 142(18): 8412-8420, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282192

RESUMO

Sensitization of a wide-gap oxide semiconductor with a visible-light-absorbing dye has been studied for decades as a means of producing H2 from water. However, efficient overall water splitting using a dye-sensitized oxide photocatalyst has remained an unmet challenge. Here we demonstrate visible-light-driven overall water splitting into H2 and O2 using HCa2Nb3O10 nanosheets sensitized by a Ru(II) tris-diimine type photosensitizer, in combination with a WO3-based water oxidation photocatalyst and a triiodide/iodide redox couple. With the use of Pt-intercalated HCa2Nb3O10 nanosheets further modified with amorphous Al2O3 clusters as the H2 evolution component, the dye-based turnover number and frequency for H2 evolution reached 4580 and 1960 h-1, respectively. The apparent quantum yield for overall water splitting using 420 nm light was 2.4%, by far the highest among dye-sensitized overall water splitting systems reported to date. The present work clearly shows that a carefully designed dye/oxide hybrid has great potential for photocatalytic H2 production, and represents a significant leap forward in the development of solar-driven water splitting systems.

10.
Angew Chem Int Ed Engl ; 59(45): 19934-19939, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32720429

RESUMO

Unit-cell-thin zeolitic nanosheets have emerged as fascinating materials for catalysis and separation. The controllability of nanosheet stacking is extremely challenging in the chemistry of two-dimensional zeolitic materials. To date, the organization of zeolitic nanosheets in hydrothermal synthesis has been limited by the lack of tunable control over the guest-host interactions between organic structure-directing agents (OSDAs) and zeolitic nanosheets. A direct synthetic methodology is reported that enables systematic manipulation of the aluminosilicate MWW-type nanosheet stacking. Variable control of guest-host interactions is rationally achieved by synergistically altering the charge density of OSDAs and synthetic silica-to-alumina composition. These finely controlled interactions allow successful preparation of a series of three-dimensional (3D) zeolites, with MWW-layer stacking in wide ranges from variably disorder to fully ordered, leading to tunable catalytic activity in the cracking reaction. These results highlight unprecedented opportunities to modulate zeolitic nanosheets arrangement in 3D zeolites whose structure can be tailored for catalysis and separation.

11.
Angew Chem Int Ed Engl ; 59(36): 15649-15655, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32453899

RESUMO

There are a large number of zeolites, such as ITH, that cannot be prepared in the aluminosilicate form. Now, the successful synthesis of aluminosilicate ITH zeolite using a simple cationic oligomer as an organic template is presented. Key to the success is that the cationic oligomer has a strong complexation ability with aluminum species combined with a structural directing ability for the ITH structure similar to that of the conventional organic template. The aluminosilicate ITH zeolite has very high crystallinity, nanosheet-like crystal morphology, large surface area, fully four-coordinated Al species, and abundant acidic sites. Methanol-to-propylene (MTP) tests reveal that the Al-ITH zeolite shows much higher selectivity for propylene and longer lifetime than commercial ZSM-5. FCC tests show that Al-ITH zeolite is a good candidate as a shape-selective FCC additive for enhancing propylene and butylene selectivity.

12.
J Am Chem Soc ; 141(45): 18318-18324, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31644275

RESUMO

A large amount of zeolite structures are still not synthetically available or not available in the form of aluminosilicate currently. Despite significant progress in the development of predictive concepts for zeolite synthesis, accessing some of these new materials is still challenging. One example is the IWR structure as well. Despite successful synthesis of Ge-based IWR zeolites, direct synthesis of aluminosilicate IWR zeolite is still not successful. In this report we show how a suitable organic structure directing agent (OSDA), through modeling of an OSDA/zeolite cage interaction, could access directly the aluminum-containing IWR structure (denoted as COE-6), which might allow access to new classes of materials and thus open opportunities in valuable chemical applications. The experimental results reveal that the COE-6 zeolites with a SiO2/Al2O3 ratio as low as 30 could be obtained. Very interestingly, the COE-6 zeolite has much higher hydrothermal and thermal stabilities than those of the conventional Ge-Al-IWR zeolite. In methanol-to-propylene (MTP) reaction, the COE-6 zeolite exhibits excellent selectivity for propylene, offering a potential catalyst for MTP reaction in the future.

13.
J Chem Inf Model ; 58(12): 2414-2419, 2018 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-30139249

RESUMO

Zeolites are important materials for research and industrial applications. Mesopores are often introduced by desilication but other properties are also affected, making its optimization difficult. In this work, we demonstrate that Perturbation Theory and Machine Learning can be combined in a PTML multioutput model describing the effects of desilication. The PTML model achieves a notable accuracy ( R2 = 0.98) in the external validation and can be useful for the rational design of novel materials.


Assuntos
Aprendizado de Máquina , Silício/química , Zeolitas/química , Simulação por Computador , Modelos Moleculares , Método de Monte Carlo , Propriedades de Superfície
14.
Sci Technol Adv Mater ; 19(1): 545-553, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108665

RESUMO

Substitution of Al atoms in a zeolite framework by catalytic metal atoms has attracted considerable attention because the catalytic behavior can be tuned by the substituted atoms. In the present study, Sn-substituted MFI-type silicates were synthesized using a hydrothermal reaction of an amorphous Si-O-Sn precursor prepared by mechanochemical grinding of SiO2 and Sn(OH)4. The mechanochemical treatment was found to be a key technique for obtaining the amorphous Si-O-Sn precursor, where tetrahedral Sn4+ species were incorporated into the amorphous matrix. The Sn content in the framework of the MFI-type silicates was successfully controlled by the initial HCl/Si molar ratio of the hydrothermal procedures. Optical reflectance measurements revealed that the Sn4+ ions were dispersedly incorporated into the silicate framework while preserving the initial tetrahedrally coordinated species. Infrared results imply that the resulting Sn-substituted MFI-type silicate has Brønsted acid character. Precise control of the Brønsted and Lewis acid properties by Sn doping is a promising approach to the development of novel types of zeolite-based catalytic materials.

15.
Chemphyschem ; 15(8): 1700-7, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24644296

RESUMO

COE-4 zeolites possess a unique two-dimensional ten-ring pore structure with the Si(OH)2 hydroxyl groups attached to the linker position between the ferrierite-type layers, which has been demonstrated through the interlayer-expansion approach in our previous work (H. Gies et al. Chem. Mater. 2012, 24, 1536). Herein, density functional theory is used to study the framework stability and Brønsted acidity of the zeolite T-COE-4, in which the tetravalent Si is isomorphously substituted by a trivalent Fe, B, Ga, or Al heteroatom at the linker position. The influences of substitution energy and equilibrium geometry parameters on the stability of T-COE-4 are investigated in detail. The relative acid strength of the linker position is revealed by the proton affinity, charge analysis, and NH3 adsorption. It is found that the range of the ⟨T-O-Si⟩ angles is widened to maintain the stability of isomorphously substituted T-COE-4 zeolites. The smaller the ⟨O1-T-O2⟩ bond angle is, the more difficult is to form the regular tetrahedral unit. Thus, the substitution energies at the linker positions increase in the following sequence: Al-COE-4 < Ga-COE-4 < Fe-COE-4 < B-COE-4. The adsorption of NH3 as a probe molecule indicates that the acidity can affect the hydrogen-bonding interaction between (N-H⋅⋅⋅O2) and (N⋅⋅⋅H-O2). The relative Brønsted-acid strength of the interlayer-expanded T-COE-4 zeolite decreases in the order of Al-COE-4 > Ga-COE-4 > Fe-COE-4 > B-COE-4. These findings may be helpful for the structural design and functional modification of interlayer-expanded zeolites.

16.
Phys Chem Chem Phys ; 16(9): 4155-64, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24451998

RESUMO

In addition to the original preparation route of the RTH-type zeolites using 1,2,2,6,6-pentamethylpiperidine (PMP) as an organic structure directing agent (OSDA), we have found that simpler organic amines such as N-methylpiperidine and pyridine can be used as alternative OSDAs in place of PMP. Furthermore, we have established a synthesis method for preparing the RTH-type zeolites without using any OSDAs. In this study, RTH-type aluminosilicates were synthesized with different types of OSDA or without using any OSDAs. The obtained zeolites synthesized with different preparation methods were characterized by using various techniques, especially high-resolution (27)Al MAS NMR and in situ FT-IR techniques using CO adsorption. The relationship between the preparation method and the catalytic performance in the methanol to olefins (MTO) reaction was discussed. Finally, the distribution of Al species in the RTH-framework was clarified.

17.
ACS Appl Mater Interfaces ; 16(14): 17701-17714, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546502

RESUMO

The spatial distribution of framework Al (AlF) has been one of the important factors that affect the catalytic properties of zeolites in diverse chemical reactions; however, the synthesis of high-silica zeolites with special AlF distribution remains a challenge. In this study, we successfully synthesized high-silica ZSM-5 zeolites with a unique AlF distribution by employing pentaerythritol (PET) as an additive in the presence of a few tetrapropylammonium hydroxide (TPAOH). The results demonstrated that the introduction of PET led to a higher proportion of Al atoms located at the sinusoidal and/or straight channels. It was observed that the addition of PET prevented the interaction between TPA+ and tetrahedral [AlO4]- during the crystallization process, resulting in enhanced availability of TPA species in the form of ion-paired TPA+. This effect leads to AlF atoms dominantly distributed away from the intersection and located in narrow channels, where acidic sites more effectively inhibit hydrogen transfer and coke formation. In the reaction of dimethyl ether (DME) to olefins, the catalyst with a unique Al distribution exhibited a significant prolonged catalytic lifetime, surpassing traditional TPA-ZSM-5 by more than 2-fold and maintaining DME conversion above 90% for a maximum of 148 h. The results of multiple pulse experiments also showed that these PET-assisted ZSM-5 zeolites significantly enhanced the selectivity of propene and butene. This approach provides an effective strategy to regulate AlF distribution in high-silica ZSM-5 catalysts with the assistance of neutral alcohol. It holds great potential for application in the synthesis of other high-silica zeolites, thereby enriching the diversity of zeolite catalysis.

18.
Nat Commun ; 15(1): 2718, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548724

RESUMO

Unraveling the effect of spatially separated bifunctional sites on catalytic reactions is significant yet challenging. In this report, we investigate the role of spatial separation on the oxidation of methane in a series of Cu-exchanged aluminosilicate zeolites. Regulation of the bifunctional sites is done either through studying a physical mixture of Cu-exchanged zeolites and acidic zeolites or by systematically varying the Cu and acid density within a family of zeolite materials. We show that separated Cu and acid sites are beneficial for the formation of hydrocarbons while high-density Cu sites, which are closer together, facilitate the production of CO2. By contrast, a balance of the spatial separation of Cu and acid sites shows more favorable formation of methanol. This work will further guide approaches to methane oxidation to methanol and open an avenue for promoting hydrocarbon synthesis using methanol as an intermediate.

19.
ACS Omega ; 8(44): 41809-41815, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970046

RESUMO

The development of a photocatalyst capable of evolving H2 from water under visible light is important. Here, the photocatalytic activity of N/F-codoped rutile TiO2 (TiO2:N,F) for H2 evolution was examined with respect to metal cocatalyst loading and irradiation conditions. Among the metal species examined, Pd was the best-performing cocatalyst for TiO2:N,F under UV-vis irradiation (λ > 350 nm), producing H2 from an aqueous methanol solution. The H2 evolution activity was also dependent on the state of the loaded Pd species on the TiO2:N,F, which varied depending on the preparation conditions. Pd/TiO2:N,F prepared by an impregnation-H2 reduction method, showed the highest performance. However, the activity of the optimized Pd/TiO2:N,F toward H2 evolution from an aqueous methanol solution was negligibly small under visible-light irradiation (λ > 400 nm), although the use of an ethylenediaminetetraacetic acid disodium salt as an electron donor resulted in observable H2 evolution. Transient absorption spectroscopy revealed that although a relatively large population of reactive electrons was generated in the TiO2:N,F under 355 nm UV-pulse photoexcitation, the density of reactive electrons generated under 480 nm visible light was lower. This wavelength-dependent behavior in photogenerated charge carrier dynamics could explain the different photocatalytic activities of the TiO2:N,F catalysts under different irradiation conditions.

20.
RSC Adv ; 12(19): 11877-11884, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481092

RESUMO

The monoallylation of aniline to give N-allyl aniline is a fundamental transformation process that results in various kinds of valuable building block allyl compounds, which can be used in the production of pharmaceuticals and electronic materials. For decades, sustainable syntheses have been gaining much attention, and the employment of allyl alcohol as an allyl source can follow the sustainability due to the formation of only water as a coproduct through dehydrative monoallylation. Although the use of homogeneous metal complex catalysts is a straightforward choice for the acceleration of dehydrative monoallylation, the use of soluble catalysts tends to contaminate products. We herein present a 10 wt% WO3/ZrO2 catalyzed monoallylation process of aniline to give N-allyl anilines in good yields with excellent selectivity, which enables the continuous selective flow syntheses of N-allyl aniline with 97-99% selectivity. The performed detailed study about the catalytic mechanism suggests that the dispersed WO3 with the preservation of the W(vi) oxidation state of 10 wt% WO3/ZrO2 with appropriate acidity and basicity is crucial for the monoallylation. The inhibition of the over allylation of the N-allyl anilines is explained by the unwilling contact of the N-allyl aniline with the active sites of WO3/ZrO2 due to the steric hindrance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA