Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38928976

RESUMO

A recent study conducted in Khon Kaen Province, Thailand, evaluated the effectiveness of a technology-assisted intervention aimed at improving water quality and addressing related health issues in communities around key water bodies. The intervention targeted health concerns associated with water contamination, including chronic kidney diseases, skin conditions, hypertension, and neurological symptoms. The study included water quality assessments and health evaluations of 586 residents and implemented a Learning Innovation Platform (LIP) across 13 communities. Results showed significant improvements in the community, including a decrease in hypertension and skin-related health issues, as well as enhanced community awareness and proficiency in implementing simple water quality assessments and treatment. The study demonstrated the value of a comprehensive, technology-driven community approach, effectively enhancing water quality and health outcomes, and promoting greater community awareness and self-sufficiency in managing environmental health risks.


Assuntos
Qualidade da Água , Tailândia , Humanos , Feminino , Masculino , Adulto , Poluição da Água , Pessoa de Meia-Idade , Dermatopatias/terapia
2.
RSC Adv ; 11(56): 35258-35267, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493192

RESUMO

Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields. In this study, we report the fabrication of biocompatible magneto-fluorescence nanoparticles consisting of carbon dots (CDots) and silica-coated cobalt-manganese nanoferrites (Co0.5Mn0.5Fe2O4) (CoMnF@Si@CDots) (MagSiCDots) by a facile hydrothermal method. The as-prepared MagSiCDots have a particle size of 100-120 nm and show a negative zeta potential of -35.50 mV at a neutral pH. The fluorescence spectrum of the MagSiCDots nanoparticles consists of sharp excitation at 365 nm and broad blue light emission with a maximum wavelength of 442.5 nm and the MagSiCDots exhibit superparamagnetic behaviour with a saturation magnetization of 11.6 emu g-1. The potential of MagSiCDots as a fluorescent sensor and be used for magnetic hyperthermia applications. It is seen that the fluorescent intensity of a colloidal solution (a hydrogen sulfide (H2S) solution containing MagSiCDots nanoparticles) has a linear relationship with the H2S concentration range of 0.2-2 µM. The limit of detection (LOD) of H2S by our MagSiCDots particles is 0.26 µM and they remain stable for at least 90 min. To test the suitability of the MagSiCDots nanoparticles for use in hyperthermia application, induction heating using an AMF was done. It was observed that these nanoparticles had a specific absorption rate (SAR) of 28.25 W g-1. The in vitro and in vivo cytotoxicity of MagSiCDots were tested on HeLa cells lines. The results show a cell viability of about 85% when exposed to 100 µg mL-1 concentration of the particles. The in vivo cytotoxicity using zebrafish assay also confirmed the non-toxicity and biocompatibility of the nanoparticles to living cells. The reported data demonstrate that by combining CoMnF@Si and fluorescent CDots into a single system, not only nontoxic multifunctional nanomaterials but also multimodal nanoparticles for several applications, such as hazard gas detection and acting as a biocompatible heat source for therapeutic treatment of cancer, are provided.

3.
RSC Adv ; 9(33): 19079-19085, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516903

RESUMO

A facile molten salt technique is an interesting preparation method as it enables mass production of materials. With the use of CsNO3 salt, Cs-intercalated MnO2 hollow microflowers are obtained in this work. δ-MnO2 with a layered structure, instead of other allotropes with smaller structural cavities, is formed and stabilized by large Cs+ ions. Formation of the hollow microflowers is explained based on the Ostwald ripening process. The salt to starting agent ratio has little effect on the crystal structure and morphologies of the products but does influence the crystallinity, the interlayer distance, and the intercalating Cs+ content. The capacity of Cs+ in the structure and the interlayer distance are maximized when the weight ratio of CsNO3 : MnSO4 is 7 : 1. Cs-MnO2 obtained from this optimum ratio has most suitable crystallinity and interlayer distance, and consequently shows a highest specific capacitance of 155 F g-1 with excellent cycling performance. The obtained specific capacitance is comparable to that of other alkaline-intercalated MnO2, suggesting that Cs-MnO2 could be another interesting candidate for supercapacitor electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA