Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 66(1): 129-140.e7, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388438

RESUMO

ATAXIN-2 (ATX2) has been implicated in human neurodegenerative diseases, yet it remains elusive how ATX2 assembles specific protein complexes to execute its physiological roles. Here we employ the posttranscriptional co-activator function of Drosophila ATX2 to demonstrate that LSM12 and ME31B/DDX6 are two ATX2-associating factors crucial for sustaining circadian rhythms. LSM12 acts as a molecular adaptor for the recruitment of TWENTY-FOUR (TYF) to ATX2. The ATX2-LSM12-TYF complex thereby stimulates TYF-dependent translation of the rate-limiting clock gene period (per) to maintain 24 hr periodicity in circadian behaviors. In contrast, ATX2 contributes to NOT1-mediated gene silencing and associates with NOT1 in a ME31B/DDX6-dependent manner. The ME31B/DDX6-NOT1 complex does not affect PER translation but supports high-amplitude behavioral rhythms along with ATX2, indicating a PER-independent clock function of ATX2. Taken together, these data suggest that the ATX2 complex may switch distinct modes of posttranscriptional regulation through its associating factors to control circadian clocks and ATX2-related physiology.


Assuntos
Ataxina-2/metabolismo , Comportamento Animal , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Locomoção , Neurônios/enzimologia , Interferência de RNA , Animais , Animais Geneticamente Modificados , Ataxina-2/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , RNA Helicases DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Genótipo , Complexos Multiproteicos , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenótipo , Proteínas de Ligação a RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
2.
Mol Cells ; 42(4): 301-312, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31091556

RESUMO

Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.


Assuntos
Relógios Circadianos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Transativadores/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas CLOCK/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Transdução de Sinais
3.
Sci Rep ; 7(1): 11368, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900300

RESUMO

Kohlschutter-Tönz syndrome (KTS) is a rare genetic disorder with neurological dysfunctions including seizure and intellectual impairment. Mutations at the Rogdi locus have been linked to development of KTS, yet the underlying mechanisms remain elusive. Here we demonstrate that a Drosophila homolog of Rogdi acts as a novel sleep-promoting factor by supporting a specific subset of gamma-aminobutyric acid (GABA) transmission. Rogdi mutant flies displayed insomnia-like behaviors accompanied by sleep fragmentation and delay in sleep initiation. The sleep suppression phenotypes were rescued by sustaining GABAergic transmission primarily via metabotropic GABA receptors or by blocking wake-promoting dopaminergic pathways. Transgenic rescue further mapped GABAergic neurons as a cell-autonomous locus important for Rogdi-dependent sleep, implying metabotropic GABA transmission upstream of the dopaminergic inhibition of sleep. Consistently, an agonist specific to metabotropic but not ionotropic GABA receptors titrated the wake-promoting effects of dopaminergic neuron excitation. Taken together, these data provide the first genetic evidence that implicates Rogdi in sleep regulation via GABAergic control of dopaminergic signaling. Given the strong relevance of GABA to epilepsy, we propose that similar mechanisms might underlie the neural pathogenesis of Rogdi-associated KTS.


Assuntos
Dopamina/metabolismo , Drosophila/fisiologia , Proteínas Nucleares/genética , Transdução de Sinais , Sono/genética , Vigília/genética , Ácido gama-Aminobutírico/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/genética , Feminino , Neurônios GABAérgicos/metabolismo , Mutação com Perda de Função , Modelos Biológicos , Mutação , Proteínas Nucleares/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Neuroscientist ; 21(5): 503-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25782890

RESUMO

Circadian clocks are endogenous time-keeping mechanisms to adaptively coordinate animal behaviors and physiology with daily environmental changes. So far many circadian studies in model organisms have identified evolutionarily conserved molecular frames of circadian clock genes in the context of transcription-translation feedback loops. The molecular clockwork drives cell-autonomously cycling gene expression with ~24-hour periodicity, which is fundamental to circadian rhythms. Light and temperature are two of the most potent external time cues to reset the circadian phase of the internal clocks, yet relatively little is known about temperature-relevant clock regulation. In this review, we describe recent findings on temperature-dependent clock mechanisms in homeothermic mammals as compared with poikilothermic Drosophila at molecular, neural, and organismal levels. We propose thermodynamic transitions in RNA secondary structures might have been potent substrates for the molecular evolution of temperature-relevant post-transcriptional mechanisms. Future works should thus validate the potential involvement of specific post-transcriptional steps in temperature-dependent plasticity of circadian clocks.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Meio Ambiente , Expressão Gênica/fisiologia , Temperatura , Animais , Humanos , Mamíferos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA