Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pharm Biol ; 55(1): 2074-2082, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28832235

RESUMO

CONTEXT: Torilidis fructus, fruits of Torilis japonica Decadolle (Umbelliferae), is a medicinal herb traditionally used as a pesticide, an astrictive, or a medicine for various inflammatory diseases. OBJECTIVES: Due to the lack of pharmacological studies on this herbal medicine, we explored the inhibitory activity of torilidis fructus on the macrophage-mediated inflammatory response using its ethanol extract (Tf-EE). MATERIAL AND METHODS: The Griess assay and prostaglandin (PGE2) ELISA assay were conducted with Tf-EE (0-75 µg/mL) and LPS (1 µg/mL) treated RAW264.7 cells in cultured media. Tf-EE pretreated RAW264.7 cells were incubated with LPS for 6 h and semi-quantitative PCR was performed. Reporter gene assays, overexpression of target enzymes and immunoblotting were performed on macrophages to determine the molecular targets of Tf-EE. RESULTS: Tf-EE markedly suppressed the inflammatory response of macrophages, such as lipopolysaccharide (LPS)-induced nitric oxide (NO) and PGE2 production with IC50 values of 35.66 and 62.47 µg/mL, respectively. It was also found that Tf-EE reduced the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 by 80%. Nuclear translocation and activation of nuclear factor (NF)-κB (p65 and p50) were declined by 60% and 30% respectively, and their regulatory events including the phosphorylation of AKT, IκBα, Src, and the formation of complexes between Src and p-p85 were also recognized to be diminished. CONCLUSIONS: The signalling events managed by Src and p85 complex seemed to be critically involved in Tf-EE-mediated anti-inflammatory response. This might suggest that Tf-EE exhibited anti-inflammatory effects through Src-targeted inhibition of NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Apiaceae , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Etanol/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Gravidez , Inibidores de Proteínas Quinases/isolamento & purificação , Células RAW 264.7
2.
Environ Microbiol ; 18(11): 4136-4143, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27449895

RESUMO

Ketoisovalerate reductase (KIVR, E.C. 1.2.7.7) mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.


Assuntos
Oxirredutases do Álcool/metabolismo , Beauveria/metabolismo , Vias Biossintéticas , Calmodulina/metabolismo , Depsipeptídeos/biossíntese , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Oxirredutases do Álcool/genética , Beauveria/enzimologia , Beauveria/genética , Calmodulina/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hemiterpenos , Cetoácidos/metabolismo , Ligação Proteica , Transdução de Sinais
3.
Phytother Res ; 29(3): 381-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25414115

RESUMO

Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti-inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl-ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl-ME dose-dependently diminished the secretion of NO and PGE2 from LPS-stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH-treated mice were also attenuated after Gl-ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, nuclear translocation of p65/nuclear factor (NF)-κB, phosphorylation of p65-activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH-induced gastric symptoms. Therefore, these results suggest that Gl-ME might be useful as an herbal anti-inflammatory medicine through the inhibition of Src and NF-κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti-inflammatory preparation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhamnaceae/química , Estilbenos/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Gastrite/tratamento farmacológico , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol , Tailândia
4.
Toxicol Appl Pharmacol ; 273(3): 659-71, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24161344

RESUMO

A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC50 of 5µM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G0/G1-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glucosídeos/farmacologia , Malatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Feminino , Glucosídeos/síntese química , Humanos , Concentração Inibidora 50 , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/metabolismo , Malatos/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Mycobiology ; 47(3): 346-349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565471

RESUMO

AMP-activated protein kinase sucrose non-fermenting 1 (Snf1) is a representative regulator of energy status that maintains cellular energy homeostasis. In addition, Snf1 is involved in the mediation of environmental stress such as salt stress. Snf1 regulates metabolic enzymes such as acetyl-CoA carboxylase, indicating a possible role for Snf1 in metabolic regulation. In this article, we performed nuclear magnetic resonance (NMR) spectroscopy to profile the metabolic changes induced by Snf1 under environmental stress. According to our NMR data, we suggest that Snf1 plays a role in regulating cellular concentrations of a variety of metabolites during environmental stress responses.

6.
J Microbiol ; 57(1): 54-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30594983

RESUMO

Cordyceps militaris is a species of Cordyceps that is classified in the Cordycipitaceae family and is well known in East Asia as a traditional medicinal mushroom. Its artificial fruit body has been widely cultivated for commercial use in cosmetics, functional food, and medicine. To explore the metabolites associated with fruit body development, we conducted gas chromatography mass spectrometry (GC-MS) analyses based on developmental stage, which was divided into the growth period (stage 1, stage 2, and stage 3) and aging period (stage 4). We detected 39 biochemical metabolites associated with nucleotide, carbohydrate, and amino acid metabolism. Cordycepin, one of the representative bioactive compounds in C. militaris, was significantly enriched in stage 4 of aging period and is associated with glucose accumulation. The accumulation of cordycepin in stage 4 of aging period also seems to be related to the glutamine and glutamic acid pathway. Our results also showed enrichment of other bioactive compounds such as mannitol and xylitol in stage 4 of aging period. Our metabolomic profiling based on the developmental stages of C. militaris is useful for exploring bioactive compounds (e.g., cordycepin, mannitol, GABA, and xylitol) that are enriched in stage 4 of aging period and understanding the biosynthetic mechanisms associated with cordycepin production. Through optimization of fruit body cultivation by selecting stage 4 of aging period as a harvesting time, our findings can be utilized in food and medical applications of C. militaris in future.


Assuntos
Cordyceps/metabolismo , Desoxiadenosinas/análise , Cordyceps/química , Cordyceps/crescimento & desenvolvimento , Desoxiadenosinas/metabolismo , Carpóforos/química , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Manitol/análise , Manitol/metabolismo , Metabolômica
7.
J Microbiol Biotechnol ; 29(8): 1212-1220, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31336431

RESUMO

The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using 1H-NMR, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ß-glucan. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.


Assuntos
Antineoplásicos/isolamento & purificação , Cordyceps/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/análise , Descoberta de Drogas , Carpóforos/química , Células Hep G2/efeitos dos fármacos , Humanos , Manitol/análise , Medicina Tradicional Chinesa , beta-Glucanas/análise
8.
Folia Microbiol (Praha) ; 63(1): 13-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28497337

RESUMO

Calmodulin (CaM) is a primary Ca2+ receptor and plays a pivotal role in a variety of cellular responses in eukaryotes. Even though a large number of CaM-binding proteins are well known in yeast, plants, and animals, little is known regarding CaM-targeted proteins in filamentous fungi. To identify CaM-binding proteins in filamentous fungi, we used a proteomics method coupled with co-immunoprecipitation (CoIP) and MALDI-TOF/TOF mass spectrometry (MS) in Beauveria bassiana. Through this method, we identified ten CaM-binding proteins in B. bassiana. One of the CaM-targeted proteins was the heat shock protein 70 (BbHSP70) in B. bassiana. Our biochemical study showed that ATP inhibits the molecular interaction between BbHSP70 and CaM, suggesting a regulatory mechanism between CaM and ATP for regulating BbHSP70.


Assuntos
Beauveria/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Beauveria/química , Beauveria/genética , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ligação Proteica , Proteômica , Alinhamento de Sequência , Espectrometria de Massas em Tandem
9.
Saudi J Biol Sci ; 25(6): 1128-1134, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30174512

RESUMO

Metabolite profiling of Wolfiporia cocos (family: Polyporaceae) had been much advancement in recent days, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly important trait of W. cocos still needs advanced protocols despite some standardization. Partial least squares discriminant analysis (PLS-DA) was used as the multivariate statistical analysis of the 1H NMR data set. The PLS-DA model was validated, and the key metabolites contributing to the separation in the score plots of different ethanol W. cocos extract. 1H NMR spectroscopy of W. cocos identified 33 chemically diverse metabolites in D2O, consisting of 13 amino acids, 11 organic acids 2 sugars, 3 sugar alcohols, 1 nucleoside, and 3 others. Among these metabolites, the levels of tyrosine, proline, methionine, sarcosine, choline, acetoacetate, citrate, 4-aminobutyrate, aspartate, maltose, malate, lysine, xylitol, lactate threonine, leucine, valine, isoleucine, uridine, guanidoacetate, arabitol, mannitol, glucose, and betaine were increased in the 95% ethanol extraction sample compared with the levels in other samples, whereas level of acetate, phenylalanine, alanine, succinate, and fumarate were significantly increased in the 0% ethanol extraction sample. A biological triterpenoid, namely pachymic acid, was detected from different ethanol P. cocos extract using 1H-NMR spectra were found in CDCl3. This is the first report to perform the metabolomics profiling of different ethanol W. cocos extract. These researches suggest that W. cocos can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents.

10.
Am J Chin Med ; 46(2): 435-452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29463104

RESUMO

Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.


Assuntos
Anti-Inflamatórios , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Momordica charantia/química , Extratos Vegetais/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Metanol , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-29725354

RESUMO

Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.

12.
J Ethnopharmacol ; 114(3): 307-15, 2007 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-17936530

RESUMO

The mushroom Phellinus linteus has been known to exhibit potent biological activity. In contrast to the immuno-potentiating properties of Phellinus linteus, the anti-inflammatory properties of Phellinus linteus have rarely been investigated. Recently, ethanol extract and n-BuOH fractions from Phellinus linteus were deemed most effective in anti-inflammatory activity in RAW 264.7 macrophages. The regulatory mechanisms of Phellinus linteus butanol fractions (PLBF) on the pharmacological and biochemical actions of macrophages involved in inflammation have not been clearly defined yet. In the present study, we tested the role of PLBF on anti-inflammation patterns in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. To investigate the mechanism by which PLBF inhibits NO and PGE2 production as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, we examined the activation of IkappaB and MAPKs in LPS-activated macrophages. PLBF clearly inhibited nuclear translocation of NF-kappaB p65 subunits, which correlated with PLBF's inhibitory effects on IkappaBalpha phosphorylation and degradation. PLBF also suppressed the activation of mitogen-activated protein (MAP) kinases including p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Furthermore, macrophages stimulated with LPS generated ROS via activation of membrane-bound NADPH oxidase, and ROS played an important role in the activation of nuclear factor-kappaB (NF-kappaB) and MAPKs. We demonstrated that PLBF directly blocked intracellular accumulation of reactive oxygen species in RAW 264.7 cells stimulated with LPS much as the NADPH oxidase inhibitors, diphenylene iodonium, and antioxidant pyrrolidine dithiocarbamate did. The suppression of NADPH oxidase also inhibited NO production and iNOS protein expression. Cumulatively, these results suggest that PLBF inhibits the production of NO and PGE2 through the down-regulation of iNOS and COX-2 gene expression via ROS-based NF-kappaB and MAPKs activation. Thus, PLBF may provide a potential therapeutic approach for inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Basidiomycota/química , Mediadores da Inflamação/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Dinoprostona/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
13.
J Med Food ; 10(1): 80-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17472471

RESUMO

Inonotus obliquus (Pers.:Fr.) Pil. is a white rot fungus that belongs to the family Hymenochaetaceae of Basidiomycetes. Extracts and fractions of this fungus have been known to have biological activities, including antimutagenic, anticancer, antioxidative, and immunostimulating effects. Recently, there have been reports that the anti-inflammatory and antinociceptive properties of the methanol extract of I. obliquus may be due to the inhibition of inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression via the down-regulation of nuclear factor kappaB (NF-kappaB) binding activity. However, the effects of I. obliquus on Akt and mitogen-activated protein kinase (MAPK) activation of inflammatory mediator production have not yet been elucidated. In the present study, a 70% ethanol extract of I. obliquus (IOE70) showed antioxidative effects. We also tested the ability of the I. obliquus extract to inhibit the inflammatory cascades in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells. The NO inhibition of IOE70 was better than that of other ethanol extracts from I. obliquus. To investigate the mechanism by which IOE 70 inhibits NO production and iNOS and COX-2 expression, we examined the activations of IkappaBalpha, Akt, and c-Jun NH(2) -terminal kinase (JNK) in LPS-activated macrophages. IOE70 markedly inhibited the phosphorylation of IkappaBalpha, Akt, and MAPKs in dose-dependent manners in LPS-activated macrophages. Taken together, these experiments demonstrated that IOE70 inhibition of LPS-induced expression of iNOS and COX-2 protein is mediated by Akt and JNK. Based on our findings, the most likely mechanism that can account for this biological effect of IOE70 involves the inhibition of NF-kappaB through the phosphatidylinositol 3-kinase/Akt/IkappaB pathway and the inhibition of JNK activation. Thus, IOE70 might have useful clinical applications in the management of inflammatory diseases and may also be useful as a medicinal food.


Assuntos
Anti-Inflamatórios/farmacologia , Basidiomycota/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Linhagem Celular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores Enzimáticos/farmacologia , Etanol , Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Fosforilação/efeitos dos fármacos , RNA Mensageiro/análise
14.
Environ Microbiol Rep ; 9(5): 612-617, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28556625

RESUMO

Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H2 O2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Beauveria/fisiologia , Calmodulina/metabolismo , Meio Ambiente , Estresse Fisiológico , Calmodulina/antagonistas & inibidores , Ativação Enzimática , Metionina/metabolismo , Ligação Proteica , Transdução de Sinais , Sulfonamidas/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-28761499

RESUMO

Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3ß (p-GSK3ß) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3ß-related caspase-3-dependent apoptosis.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28811826

RESUMO

Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.

17.
Eur J Pharmacol ; 535(1-3): 212-9, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16516885

RESUMO

Myocardial oxidative stress and Ca2+ overload induced by ischemia-reperfusion may be involved in the development and progression of myocardial dysfunction in heart failure. Xanthine oxidase, which is capable of producing reactive oxygen species, is considered as a culprit regarding ischemia-reperfusion injury of cardiomyocytes. Even though inhibition of xanthine oxidase by allopurinol in failing hearts improves cardiac performance, the regulatory mechanisms are not known in detail. We therefore hypothesized that allopurinol may prevent the xanthine oxidase-induced reactive oxygen species production and Ca2+ overload, leading to decreased calcium-responsive signaling in myocardial dysfunction. Allopurinol reversed the increased xanthine oxidase activity in ischemia-reperfusion injury of neonatal rat hearts. Hypoxia-reoxygenation injury, which simulates ischemia-reperfusion injury, of neonatal rat cardiomyocytes resulted in activation of xanthine oxidase relative to that of the control, indicating that intracellular xanthine oxidase exists in neonatal rat cardiomyocytes and that hypoxia-reoxygenation induces xanthine oxidase activity. Allopurinol (10 microM) treatment suppressed xanthine oxidase activity induced by hypoxia-reoxygenation injury and the production of reactive oxygen species. Allopurinol also decreased the concentration of intracellular Ca2+ increased by enhanced xanthine oxidase activity. Enhanced xanthine oxidase activity resulted in decreased expression of protein kinase C and sarcoendoplasmic reticulum calcium ATPase and increased the phosphorylation of extracellular signal-regulated protein kinase and p38 kinase. Xanthine oxidase activity was increased in both ischemia-reperfusion-injured rat hearts and hypoxia-reoxygenation-injured cardiomyocytes, leading to reactive oxygen species production and intracellular Ca2+ overload through mechanisms involving p38 kinase and extracellular signal-regulated protein kinase (ERK) via sarcoendoplasmic reticulum calcium ATPase (SERCA) and protein kinase C (PKC). Xanthine oxidase inhibition with allopurinol modulates reactive oxygen species production and intracellular Ca2+ overload in hypoxia-reoxygenation-injured neonatal rat cardiomyocytes.


Assuntos
Alopurinol/farmacologia , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , ATPases Transportadoras de Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Citometria de Fluxo , Sequestradores de Radicais Livres/farmacologia , Masculino , Microscopia Confocal , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Oxigênio/farmacologia , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
18.
Eur J Pharmacol ; 545(2-3): 192-9, 2006 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-16899239

RESUMO

Cordyceps militaris, a caterpillar-grown traditional medicinal mushroom, produces an important bioactive compound, cordycepin (3'-deoxyadenosine). Cordycepin is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, anti-virus and anti-infection activities. The molecular mechanisms of cordycepin on pharmacological and biochemical actions of macrophages in inflammation have not been clearly elucidated yet. In the present study, we tested the role of cordycepin on the anti-inflammation cascades in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. In LPS-activated macrophage, nitric oxide (NO) production was inhibited by butanol fraction of C. militaris and the major component of C. militaris butanol faction was identified as cordycepin by high performance liquid chromatography. To investigate the mechanism by which cordycepin inhibits NO production and inducible nitric oxide synthase (iNOS) expression, we examined the activation of Akt and MAP kinases in LPS-activated macrophage. Cordycepin markedly inhibited the phosphorylation of Akt and p38 in dose-dependent manners in LPS-activated macrophage. Moreover, cordycepin suppressed tumor necrosis factor (TNF-alpha) expression, IkappaB alpha phosphorylation, and translocation of nuclear factor-kappaB (NF-kappaB). The expressions of cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly decreased in RAW 264.7 cell by cordycepin. Taken together, these results suggest that cordycepin inhibits the production of NO production by down-regulation of iNOS and COX-2 gene expression via the suppression of NF-kappaB activation, Akt and p38 phosphorylation. Thus, cordycepin may provide a potential therapeutic approach for inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Desoxiadenosinas/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Linhagem Celular , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/genética , Proteínas I-kappa B/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/análise , Fosforilação , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
19.
J Ethnopharmacol ; 188: 167-76, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27178629

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Seed of Torreya nucifera (L.) Siebold & Zucc is used to treat several diseases in Asia. Reports document that T. nucifera has anti-cancer, anti-inflammatory, anti-oxidative activities. In spite of numerous findings on its pharmacological effects, the understanding of the molecular inhibitory mechanisms of the plant remains to be studied. Therefore, we aimed to explore in vitro anti-inflammatory mechanisms of ethyl acetate fraction (Tn-EE-BF) prepared from the seed of T. nucifera in LPS-stimulated macrophage inflammatory responses. MATERIALS AND METHODS: For this purpose, we measured nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated macrophages. Additionally, using RT-PCR, luciferase reporter gene assay, immunoblotting analysis, and kinase assay, the levels of inflammatory genes, transcription factors, and inflammatory signal-regulatory proteins were investigated. Finally, the constituent of Tn-EE-BF was identified using HPLC. RESULTS: Tn-EE-BF inhibits NO and PGE2 production and also blocks mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in a dose dependent manner. Tn-EE-BF reduces nuclear levels of the transcriptional factors NF-κB (p65) and AP-1 (c-Jun and FRA-1). Surprisingly, we found that Tn-EE-BF inhibits phosphorylation levels of Src and Syk in the NF-κB pathway, as well as, IRAK1 at the protein level, part of the AP-1 pathway. By kinase assay, we confirmed that Src, Syk, and IRAK1 are suppressed directly. HPLC analysis indicates that arctigenin, amentoflavone, and quercetin may be active components with anti-inflammatory activities. CONCLUSION: Tn-EE-BF exhibits anti-inflammatory activities by direct inhibition of Src/Syk/NF-κB and IRAK1/AP-1.


Assuntos
Anti-Inflamatórios/farmacologia , Butanóis/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solventes/química , Quinase Syk/metabolismo , Taxaceae/química , Quinases da Família src/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Cells ; 19(1): 60-6, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15750341

RESUMO

Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood. We examined the effects of native LDL and glycated LDL on the extracellular signal-regulated kinase (ERK) pathway. Addition of native and glycated LDL to rat aorta SMCs (RASMCs) stimulated ERK phosphorylation. ERK phosphorylation was not affected by exposure to the Ca2+ chelator BAPTA-AM but inhibition of protein kinase C (PKC) with GF109203X, inhibition of Src kinase with PP1 (5 microM) and inhibition of phospholipase C (PLC) with U73122/U73343 (5 microM) all reduced ERK phosphorylation in response to glycated LDL. In addition, pretreatment of the RASMCs with a cell-permeable mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059, 5 microM) markedly decreased ERK phosphorylation in response to native and glycated LDL. These findings indicate that ERK phosphorylation in response to glycated LDL involves the activation of PKC, PLC, and MEK, but is independent of intracellular Ca2+.


Assuntos
Lipoproteínas LDL/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Músculo Liso Vascular/citologia , Animais , Aorta/citologia , Linhagem Celular , Proliferação de Células , Flavonoides/farmacologia , Produtos Finais de Glicação Avançada , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Fosfolipases Tipo C/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA