Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
EMBO Rep ; 24(2): e55313, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36413000

RESUMO

Growing evidence suggests that the corticotropin-releasing hormone (CRH) signaling pathway, mainly known as a critical initiator of humoral stress responses, has a role in normal neuronal physiology. However, despite the evidence of CRH receptor (CRHR) expression in the embryonic ventricular zone, the exact functions of CRH signaling in embryonic brain development have not yet been fully determined. In this study, we show that CRHR1 is required for the maintenance of neural stem cell properties, as assessed by in vitro neurosphere assays and cell distribution in the embryonic cortical layers following in utero electroporation. Identifying the underlying molecular mechanisms of CRHR1 action, we find that CRHR1 functions are accomplished through the increasing expression of the master transcription factor REST. Furthermore, luciferase reporter and chromatin immunoprecipitation assays reveal that CRHR1-induced CREB activity is responsible for increased REST expression at the transcriptional level. Taken together, these findings indicate that the CRHR1/CREB/REST signaling cascade plays an important role downstream of CRH in the regulation of neural stem cells during embryonic brain development.


Assuntos
Hormônio Liberador da Corticotropina , Células-Tronco Neurais , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Células-Tronco Neurais/metabolismo , Mamíferos/metabolismo
2.
PLoS Pathog ; 18(12): e1011007, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36455047

RESUMO

YES-associated protein (YAP), a critical actor of the mammalian Hippo signaling pathway involved in diverse biological events, has gained increased recognition as a cellular factor regulated by viral infections, but very few studies have investigated their relationship vice versa. In this study, we show that YAP impairs HCMV replication as assessed by viral gene expression analysis and progeny assays, and that this inhibition occurs at the immediate-early stages of the viral life cycle, at the latest. Using YAP mutants lacking key functional domains and shRNA against TEAD, we show that the inhibitory effects of YAP on HCMV replication are nuclear localization- and TEAD cofactor-dependent. Quantitative real-time PCR (qPCR) and subcellular fractionation analyses reveal that YAP does not interfere with the viral entry process but inhibits transport of the HCMV genome into the nucleus. Most importantly, we show that the expression of stimulator of interferon genes (STING), recently identified as an important component for nuclear delivery of the herpesvirus genome, is severely downregulated by YAP at the level of gene transcription. The functional importance of STING is further confirmed by the observation that STING expression restores YAP-attenuated nuclear transport of the HCMV genome, viral gene expression, and progeny virus production. We also show that HCMV-upregulated YAP reduces expression of STING. Taken together, these findings indicate that YAP possesses both direct and indirect regulatory roles in HCMV replication at different infection stages.


Assuntos
Citomegalovirus , Replicação Viral , Animais , Citomegalovirus/genética , Transporte Ativo do Núcleo Celular , Replicação Viral/genética , Núcleo Celular/metabolismo , Genoma Viral , Mamíferos
3.
Biochem Biophys Res Commun ; 674: 75-82, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37413708

RESUMO

Glioblastoma Multiforme (GBM) is a highly malignant brain tumor with poor prognosis. Understanding the molecular mechanisms driving GBM tumorigenesis is crucial for developing effective therapeutic strategies. This study investigates the role of STAC1, a gene belonging to the SH3 and cysteine-rich domain family, in glioblastoma cell invasion and survival. Computational analyses of patient samples reveal that STAC1 expression is elevated in GBM tissues, and higher STAC1 expression is associated with lower overall survival rates. Consistently, we find that overexpression of STAC1 in glioblastoma cells enhances invasion, while knockdown of STAC1 reduces invasion and the expression of genes associated with epithelial-to-mesenchymal transition (EMT). STAC1 depletion also induces apoptosis in glioblastoma cells. Furthermore, we show that STAC1 regulates AKT and calcium channel signaling in glioblastoma cells. Collectively, our study provides valuable insights into the pathogenic roles of STAC1 in GBM and highlights its potential as a promising target for the treatment of high-grade glioblastoma.

4.
J Neurosci ; 40(36): 6872-6887, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32737167

RESUMO

Neuronal progenitors in the developing forebrain undergo dynamic competence states to ensure timely generation of specific excitatory and inhibitory neuronal subtypes from distinct neurogenic niches of the dorsal and ventral forebrain, respectively. Here we show evidence of progenitor plasticity when Sonic hedgehog (SHH) signaling is left unmodulated in the embryonic neocortex of the mammalian dorsal forebrain. We found that, at early stages of corticogenesis, loss of Suppressor of Fused (Sufu), a potent inhibitor of SHH signaling, in neocortical progenitors, altered the transcriptomic landscape of male mouse embryos. Ectopic activation of SHH signaling occurred, via degradation of Gli3R, resulting in significant upregulation of fibroblast growth factor 15 (FGF15) gene expression in all E12.5 Sufu-cKO neocortex regardless of sex. Consequently, activation of FGF signaling, and its downstream effector the MAPK signaling, facilitated expression of genes characteristic of ventral forebrain progenitors. Our studies identify the importance of modulating extrinsic niche signals such as SHH and FGF15, to maintain the competency and specification program of neocortical progenitors throughout corticogenesis.SIGNIFICANCE STATEMENT Low levels of FGF15 control progenitor proliferation and differentiation during neocortical development, but little is known on how FGF15 expression is maintained. Our studies identified SHH signaling as a critical activator of FGF15 expression during corticogenesis. We found that Sufu, via Gli3R, ensured low levels of FGF15 was expressed to prevent abnormal specification of neocortical progenitors. These studies advance our knowledge on the molecular mechanisms guiding the generation of specific neocortical neuronal lineages, their implications in neurodevelopmental diseases, and may guide future studies on how progenitor cells may be used for brain repair.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Feminino , Fatores de Crescimento de Fibroblastos/genética , Proteínas Hedgehog/genética , Masculino , Camundongos , Neocórtex/embriologia , Células-Tronco Neurais/citologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Regulação para Cima
5.
Development ; 144(5): 778-783, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174252

RESUMO

Transactivation response element RNA-binding protein (TRBP; TARBP2) is known to play important roles in human immunodeficiency virus (HIV) replication and microRNA biogenesis. However, recent studies implicate TRBP in a variety of biological processes as a mediator of cross-talk between signal transduction pathways. Here, we provide the first evidence that TRBP is required for efficient neurosphere formation and for the expression of neural stem cell markers and Notch target genes in primary neural progenitor cells in vitro Consistent with this, introduction of TRBP into the mouse embryonic brain in utero increased the fraction of cells expressing Sox2 in the ventricular zone. We also show that TRBP physically interacts with the Notch transcriptional coactivation complex through C promoter-binding factor 1 (CBF1; RBPJ) and strengthens the association between the Notch intracellular domain (NICD) and CBF1, resulting in increased NICD recruitment to the promoter region of a Notch target gene. Our data indicate that TRBP is a novel transcriptional coactivator of the Notch signaling pathway, playing an important role in neural stem cell regulation during mammalian brain development.


Assuntos
Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/metabolismo , Ativação Transcricional , Animais , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Sistema Nervoso Central/embriologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Hibridização In Situ , Camundongos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
6.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30177553

RESUMO

Despite growing evidence linking Drosophila melanogaster tweety-homologue 1 (Ttyh1) to normal mammalian brain development and cell proliferation, its exact role has not yet been determined. Here, we show that Ttyh1 is required for the maintenance of neural stem cell (NSC) properties as assessed by neurosphere formation and in vivo analyses of cell localization after in utero electroporation. We find that enhanced Ttyh1-dependent stemness of NSCs is caused by enhanced γ-secretase activity resulting in increased levels of Notch intracellular domain (NICD) production and activation of Notch targets. This is a unique function of Ttyh1 among all other Ttyh family members. Molecular analyses revealed that Ttyh1 binds to the regulator of γ-secretase activity Rer1 in the endoplasmic reticulum and thereby destabilizes Rer1 protein levels. This is the key step for Ttyh1-dependent enhancement of γ-secretase activity, as Rer1 overexpression completely abolishes the effects of Ttyh1 on NSC maintenance. Taken together, these findings indicate that Ttyh1 plays an important role during mammalian brain development by positively regulating the Notch signaling pathway through the downregulation of Rer1.


Assuntos
Proteínas de Membrana/metabolismo , Células-Tronco Neurais/fisiologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Camundongos Endogâmicos , Células-Tronco Neurais/metabolismo , Gravidez , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Notch/genética , Transdução de Sinais
7.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357521

RESUMO

Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N'-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.


Assuntos
Acetamidas/farmacologia , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/efeitos adversos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Acetamidas/química , Animais , Anti-Inflamatórios/química , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Molecules ; 25(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050143

RESUMO

Muscle atrophy is an abnormal condition characterized by loss of skeletal muscle mass and function and is primarily caused by injury, malnutrition, various diseases, and aging. Leaf of lotus (Nelumbo nucifera Gaertn), which has been used for medicinal purposes, contains various active ingredients, including polyphenols, and is reported to exert an antioxidant effect. In this study, we investigated the effect of water extract of lotus leaf (LL) on muscle atrophy and the underlying molecular mechanisms of action. Amounts of 100, 200, or 300 mg/kg/day LL were administered to dexamethasone (DEX)-induced muscle atrophy mice for 4 weeks. Micro-computed tomography (CT) analysis revealed that the intake of LL significantly increased calf muscle volume, surface area, and density in DEX-induced muscle atrophy mice. Administration of LL recovered moving distance, grip strength, ATP production, and body weight, which were decreased by DEX. In addition, muscle damage caused by DEX was also improved by LL. LL reduced the protein catabolic pathway by suppressing gene expression of muscle atrophy F-Box (MAFbx; atrogin-1), muscle RING finger 1 (MuRF1), and forkhead box O (FoxO)3a, as well as phosphorylation of AMP-activated kinase (AMPK). The AKT-mammalian target of the rapamycin (mTOR) signal pathway, which is important for muscle protein synthesis, was increased in LL-administered groups. The HPLC analysis and pharmacological test revealed that quercetin 3-O-beta-glucuronide (Q3G) is a major active component in LL. Thus, Q3G decreased the gene expression of atrogin-1 and MuRF1 and phosphorylation of AMPK. This compound also increased phosphorylation levels of mTOR and its upstream enzyme AKT in DEX-treated C2C12 cells. We identified that LL improves muscle wasting through regulation of muscle protein metabolism in DEX-induced muscle atrophy mice. Q3G is predicted to be one of the major active phenolic components in LL. Therefore, we propose LL as a supplement or therapeutic agent to prevent or treat muscle wasting, such as sarcopenia.


Assuntos
Dexametasona/toxicidade , Lotus/química , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Água/química , Animais , Western Blotting , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Extratos Vegetais/química , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
9.
Biochem Biophys Res Commun ; 513(2): 392-397, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30967258

RESUMO

The protein activator of protein kinase R (PKR) (PACT) is known to play important roles in PKR regulation and microRNA biogenesis. Based on the observation that PACT is specifically expressed in the ventricular zone (VZ) at the mid-neurogenic period, we examine the role of PACT in this embryonic neural stem cell niche. Here, we provide the first evidence that PACT increases neurosphere formation, as well as expression of Notch target genes and the neural stem cell marker Sox2 in primary neural stem cells in vitro. Consistently, introduction of PACT into the mouse embryonic brain in utero increased the fraction of cells localizing to the VZ. We also show that the PACT-enhanced stemness of neural stem cells is PKR-independent. At the molecular level, PACT was revealed to physically interact with C promoter binding factor 1 (CBF1) and dramatically strengthen the association between CBF1 and Notch intracellular domain (NICD), which indicates stabilization of the Notch transcriptional coactivation complex responsible for Notch target gene expression. Taken together, our study indicates that PACT is a novel transcriptional coactivator of the Notch pathway playing a pivotal role during mammalian brain development.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células HEK293 , Humanos , Camundongos , Células-Tronco Neurais/citologia
10.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717391

RESUMO

Loliolide is a monoterpenoid hydroxylactone present in freshwater algae that has anti-inflammatory and antiaging activity; however, its effects on ultraviolet-damaged skin have yet to be elucidated. This study investigated the antiapoptosis and wound-healing effects of loliolide using HaCaT cells (a human keratinocyte cell line). Loliolide inhibited the expression of reactive oxygen species (ROS) induced by ultraviolet radiation as well as wrinkle formation-related matrix metalloproteinase genes and increased the expression of the damage repair-related gene SIRT1. The apoptosis signaling pathway was confirmed by Western blot analysis, which showed that loliolide was able to reduce the expression of caspases 3, 8, and 9, which are related to ROS-induced apoptosis. In addition, Western blotting, reverse-transcription polymerase chain reaction (PCR), and real-time PCR analyses showed that loliolide enhanced the expression of the epidermal growth factor receptor signaling pathway (PI3K, AKT) and migration factors, such as K6, K16, and K17; keratinocyte growth factor; and inflammatory cytokines, such as interleukin (IL)-1, IL-17, and IL-22 expressed during the cellular scratching process, suggesting a putative wound-healing ability. Because of the antiapoptosis and antiscratching effects on skin of both loliolide and loliolide-rich Prasiola japonica ethanol extract, we consider the former to be an important compound used in the cosmeceutical industry.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Estrutura Molecular
11.
J Virol ; 91(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615204

RESUMO

Despite the high incidence of severe defects in the central nervous system caused by human cytomegalovirus (HCMV) congenital infection, the mechanism of HCMV neuropathogenesis and the roles of individual viral genes have not yet been fully determined. In this study, we show that the immediate-early 2 (IE2) protein may play a key role in HCMV-caused neurodevelopmental disorders. IE2-transduced neural progenitor cells gave rise to neurospheres with a lower frequency and produced smaller neurospheres than control cells in vitro, indicating reduction of self-renewal and expansion of neural progenitors by IE2. At 2 days after in utero electroporation into the ventricle of the developing brain, a dramatically lower percentage of IE2-expressing cells was detected in the ventricular zone (VZ) and cortical plate (CP) compared to control cells, suggesting that IE2 concurrently dysregulates neural stem cell maintenance in the VZ and neuronal migration to the CP. In addition, most IE2+ cells in the lower intermediate zone either showed multipolar morphology with short neurites or possessed nonradially oriented processes, whereas control cells had long, radially oriented monopolar or bipolar neurites. IE2+ callosal axons also failed to cross the midline to form the corpus callosum. Furthermore, we provide molecular evidence that the cell cycle arrest and DNA binding activities of IE2 appear to be responsible for the increased neural stem cell exit from the VZ and cortical migrational defects, respectively. Collectively, our results demonstrate that IE2 disrupts the orderly process of brain development in a stepwise manner to further our understanding of neurodevelopmental HCMV pathogenesis.IMPORTANCE HCMV brain pathogenesis has been studied in limited experimental settings, such as in vitro HCMV infection of neural progenitor cells or in vivo murine CMV infection of the mouse brain. Here, we show that IE2 is a pivotal factor that contributes to HCMV-induced abnormalities in the context of the embryonic brain using an in utero gene transfer tool. Surprisingly, IE2, but not HCMV IE1 or murine CMV ie3, interferes pleiotropically with key neurodevelopmental processes, including neural stem cell regulation, proper positioning of migrating neurons, and the callosal axon projections important for communication between the hemispheres. Our data suggest that the wide spectrum of clinical outcomes, ranging from mental retardation to microcephaly, caused by congenital HCMV infection can be sufficiently explained in terms of IE2 action alone.


Assuntos
Infecções por Citomegalovirus/patologia , Proteínas Imediatamente Precoces/metabolismo , Células-Tronco Neurais/virologia , Neurônios/citologia , Transativadores/metabolismo , Proteínas do Envelope Viral/genética , Animais , Encéfalo/citologia , Encéfalo/virologia , Pontos de Checagem do Ciclo Celular , Citomegalovirus/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Virais , Humanos , Proteínas Imediatamente Precoces/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Neurônios/virologia , Gravidez , Transativadores/genética , Replicação Viral
12.
Mol Cell Biochem ; 430(1-2): 1-9, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28239754

RESUMO

Neprilysin (NEP) is a zinc metallopeptidase that cleaves a number of small peptides into inactive forms. Despite the recent evidence of a significant correlation between the levels of NEP in plasma and the severity of obesity in humans, a cause-and-effect relationship or a functional role of NEP in obesity has remained uncertain. In this study, we show that NEP has a positive regulatory effect on fat cell formation from precursor cells. NEP increases the accumulation of cytoplasmic triglycerides in 3T3-L1 preadipocytes or the C3H10T1/2 mesenchymal stem cell line in differentiation conditions. Consistently, cells expressing NEP showed an increase in mRNA expression of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and the adipocyte markers aP2 and adipsin. Furthermore, this NEP-enhanced induction of adipogenesis was found to require the enzymatic activity of NEP, leading to augmentation of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway. In summary, our results indicate that NEP accelerates adipogenesis through enhancement of insulin-mediated PI3K-Akt activation and imply a high therapeutic value of NEP in treating obesity and obesity-related disorders.


Assuntos
Adipogenia , Neprilisina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Camundongos , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Genes Cells ; 20(9): 706-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26243725

RESUMO

In addition to its well-established role during immune system function, NF-κB regulates cell survival and synaptic plasticity in the mature nervous system. Here, we show that during mouse brain development, NF-κB activity is present in the neocortical ventricular and subventricular zones (VZ and SVZ), where it regulates proliferative pool maintenance. Activation of NF-κB signaling, by expression of p65 or an activated form of the IκB kinase complex subunit IKK2, inhibited neuronal differentiation and promoted retention of progenitors in the VZ and SVZ. In contrast, blockade of the pathway with dominant negative forms of IKK2 and IκBα promoted neuronal differentiation both in vivo and in vitro. Furthermore, by modulating both the NF-κB and Notch pathways, we show that in the absence of canonical Notch activity, after knockdown of the pathway effector CBF1, NF-κB signaling promoted Tbr2 expression and intermediate neural progenitor fate. Interestingly, however, activation of NF-κB in vivo, with canonical Notch signaling intact, promoted expression of the radial glial marker Pax6. This work identifies NF-κB signaling as a regulator of neocortical neurogenesis and suggests that the pathway plays roles in both the VZ and SVZ.


Assuntos
NF-kappa B/metabolismo , Neocórtex/crescimento & desenvolvimento , Neurogênese , Transdução de Sinais , Animais , Proteínas do Olho/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo
14.
Biochem Biophys Res Commun ; 458(1): 110-6, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25634692

RESUMO

Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)-dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Encéfalo/embriologia , Encéfalo/fisiologia , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos , Dados de Sequência Molecular , Proteínas Musculares/genética , Neurônios/citologia , Fosfoproteínas/genética , Gravidez , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Transativadores , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
15.
Biochem Biophys Res Commun ; 450(1): 831-6, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24960195

RESUMO

Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca(2+)-independent manner, while myricetin inhibits Ca(2+)-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Zíper de Leucina/efeitos dos fármacos , Fusão de Membrana/fisiologia , Neurônios/metabolismo , Polifenóis/farmacologia , Proteínas SNARE/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12 , Ratos
16.
Mol Imaging ; 12(8)2013.
Artigo em Inglês | MEDLINE | ID: mdl-24447614

RESUMO

In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD) into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5), whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.


Assuntos
Encéfalo/embriologia , Técnicas de Transferência de Genes , Vetores Genéticos , Retroviridae/genética , Transgenes , Ultrassonografia/métodos , Animais , Encéfalo/metabolismo , Embrião de Mamíferos , Terapias Fetais/métodos , Expressão Gênica , Humanos , Luciferases/genética , Camundongos , Microinjeções
17.
Nature ; 449(7160): 351-5, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17721509

RESUMO

During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Camundongos , Telencéfalo/metabolismo
18.
Nature ; 445(7129): 776-80, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17259973

RESUMO

In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.


Assuntos
Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/deficiência , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Receptor Notch1/deficiência , Retina/citologia , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 107(51): 22145-50, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135223

RESUMO

Neuronal SNARE proteins mediate neurotransmitter release at the synapse by facilitating the fusion of vesicles to the presynaptic plasma membrane. Cognate v-SNAREs and t-SNAREs from the vesicle and the plasma membrane, respectively, zip up and bring about the apposition of two membranes attached at the C-terminal ends. Here, we demonstrate that SNARE zippering can be modulated in the midways by wedging with small hydrophobic molecules. Myricetin, which intercalated into the hydrophobic inner core near the middle of the SNARE complex, stopped SNARE zippering in motion and accumulated the trans-complex, where the N-terminal region of v-SNARE VAMP2 is in the coiled coil with the frayed C-terminal region. Delphinidin and cyanidin inhibited N-terminal nucleation of SNARE zippering. Neuronal SNARE complex in PC12 cells showed the same pattern of vulnerability to small hydrophobic molecules. We propose that the half-zipped trans-SNARE complex is a crucial intermediate waiting for a calcium trigger that leads to fusion pore opening.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Animais , Antocianinas/farmacologia , Membrana Celular/genética , Flavonoides/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Células PC12 , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/genética
20.
Planta Med ; 78(1): 12-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21928167

RESUMO

ZYM-201 is a methyl ester of a novel triterpenoid glycoside. It is isolated from SANGUISORBA OFFICINALIS, a widely used medicinal plant in Korea, China, and Japan, that is prescribed for various diseases such as diarrhea, chronic intestinal infections, duodenal ulcers, and bleeding. In this study, the antihyperlipidemic effect of the salt form (sodium succinate) of ZYM-201 was examined using streptozotocin (STZ)-treated hyperglycemic rats. Oral administration of ZYM-201 sodium succinate (3 to 10 mg/kg) resulted in recovery of the increased serum levels of triglyceride (TG) and total cholesterol (TC) back to normal levels. Elevated levels of serum lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), were also significantly restored by this compound without altering 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity. Finally, ZYM-201 sodium succinate displayed antioxidative properties, including suppression of lipid peroxide and hydroxyl radical generation and upregulation of superoxide dismutase (SOD) activity. Therefore, our data strongly suggest that ZYM-201 sodium succinate can be used as a remedy for the treatment of diabetes-derived hyperlipidemic disorders such as atherosclerosis and vascular diseases.


Assuntos
Antioxidantes/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Fitoterapia , Sanguisorba/química , Triterpenos/uso terapêutico , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Complicações do Diabetes/sangue , Complicações do Diabetes/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Radical Hidroxila/metabolismo , Hiperlipidemias/sangue , Hiperlipidemias/induzido quimicamente , Hipolipemiantes/isolamento & purificação , Hipolipemiantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Estreptozocina , Superóxido Dismutase/metabolismo , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA