RESUMO
MDA5 is an essential intracellular sensor for several viruses, including picornaviruses, and elicits antiviral interferon (IFN) responses by recognizing viral dsRNAs. MDA5 has been implicated in autoimmunity. However, the mechanisms of how MDA5 contributes to autoimmunity remain unclear. Here we provide direct evidence that dysregulation of MDA5 caused autoimmune disorders. We established a mutant mouse line bearing MDA5 mutation by ENU mutagenesis, which spontaneously developed lupus-like autoimmune symptoms without viral infection. Inflammation was dependent on an adaptor molecule, MAVS indicating the importance of MDA5-signaling. In addition, intercrossing the mutant mice with type I IFN receptor-deficient mice ameliorated clinical manifestations. This MDA5 mutant could activate signaling in the absence of its ligand but was paradoxically defective for ligand- and virus-induced signaling, suggesting that the mutation induces a conformational change in MDA5. These findings provide insight into the association between disorders of the innate immune system and autoimmunity.
Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/fisiopatologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Helicase IFIH1 Induzida por Interferon , Interferon-alfa/genética , Interferon-alfa/metabolismo , Camundongos , MutaçãoRESUMO
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 spike protein in high yield. We found that a large proportion of pseudovirions produced with the conventional transient expression system lacked coronavirus spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus spike protein allowed the efficient production of progeny pseudoviruses decorated with spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.Key words: severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, pseudovirus, vesicular stomatitis virus (VSV), spike protein.
Assuntos
Glicoproteína da Espícula de Coronavírus , Vírus da Estomatite Vesicular Indiana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/biossíntese , Vírus da Estomatite Vesicular Indiana/metabolismoRESUMO
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open-close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME.
Assuntos
Vesículas Revestidas por Clatrina/fisiologia , Endocitose , Actinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dinaminas/metabolismo , Microscopia de Força Atômica , Microscopia ConfocalRESUMO
The oncogenic tyrosine kinase BCR-ABL activates a variety of signaling pathways and plays a causative role in the pathogenesis of chronic myelogenous leukemia (CML); however, the subcellular distribution of this chimeric protein remains controversial. Here, we report that BCR-ABL is localized to stress granules and that its granular localization contributes to BCR-ABL-dependent leukemogenesis. BCR-ABL-positive granules were not colocalized with any markers for membrane-bound organelles but were colocalized with HSP90a, a component of RNA granules. The number of such granules increased with thapsigargin treatment, confirming that the granules were stress granules. Given that treatment with the ABL kinase inhibitor imatinib and elimination of the N-terminal region of BCR-ABL abolished granule formation, kinase activity and the coiled-coil domain are required for granule formation. Whereas wild-type BCR-ABL rescued the growth defect in IL-3-depleted Ba/F3 cells, mutant BCR-ABL lacking the N-terminal region failed to do so. Moreover, forced tetramerization of the N-terminus-deleted mutant could not restore the growth defect, indicating that granule formation, but not tetramerization, through its N-terminus is critical for BCR-ABL-dependent oncogenicity. Our findings together provide new insights into the pathogenesis of CML by BCR-ABL and open a window for developing novel therapeutic strategies for this disease.Key words: BCR-ABL, subcellular localization, stress granule.
Assuntos
Carcinogênese , Grânulos Citoplasmáticos/enzimologia , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proliferação de Células , Sobrevivência Celular , Humanos , Imagem Óptica , Estresse Fisiológico , Células Tumorais CultivadasRESUMO
The discovery of fluorescent proteins (FPs) has revolutionized cell biology. The fusion of targeting sequences to FPs enables the investigation of cellular organelles and their dynamics; however, occasionally, such fluorescent fusion proteins (FFPs) exhibit behavior different from that of the native proteins. Here, we constructed a color pallet comprising different organelle markers and found that FFPs targeted to the mitochondria were mislocalized when fused to certain types of FPs. Such FPs included several variants of Aequorea victoria green FP (avGFP) and a monomeric variant of the red FP. Because the FFPs that are mislocalized include FPs with faster maturing or folding mutations, the increase in the maturation rate is likely to prevent their expected localization. Indeed, when we reintroduced amino acid substitutions so that the FP sequences were equivalent to that of wild-type avGFP, FFP localization to the mitochondria was significantly enhanced. Moreover, similar amino acid substitutions improved the localization of mitochondria-targeted pHluorin, which is a pH-sensitive variant of GFP, and its capability to monitor pH changes in the mitochondrial matrix. Our findings demonstrate the importance of selecting FPs that maximize FFP function.Key words: fluorescent protein, organelle, fusion protein, mitochondria.
Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , HidrozoáriosRESUMO
We demonstrate an application of atomic force microscopy (AFM) for the structural analysis of long single-stranded RNA (>1 kb), focusing on 28S ribosomal RNA (rRNA). Generally, optimization of the conditions required to obtain three-dimensional (3D) structures of long RNA molecules is a challenging or nearly impossible process. In this study, we overcome these limitations by developing a method using AFM imaging combined with automated, MATLAB-based image analysis algorithms for extracting information about the domain organization of single RNA molecules. We examined the 5 kb human 28S rRNA since it is the largest RNA molecule for which a 3D structure is available. As a proof of concept, we determined a domain structure that is in accordance with previously described secondary structural models. Importantly, we identified four additional small (200-300 nt), previously unreported domains present in these molecules. Moreover, the single-molecule nature of our method enabled us to report on the relative conformational variability of each domain structure identified, and inter-domain associations within subsets of molecules leading to molecular compaction, which may shed light on the process of how these molecules fold into the final tertiary structure.
Assuntos
Imageamento Tridimensional/métodos , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico , RNA Ribossômico 28S/química , Algoritmos , Sítios de Ligação/genética , Células HeLa , Humanos , Cinética , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Reprodutibilidade dos TestesRESUMO
The dynamics of the cell membrane and submembrane structures are closely linked, facilitating various cellular activities. Although cell surface research and cortical actin studies have shown independent mechanisms for the cell membrane and the actin network, it has been difficult to obtain a comprehensive understanding of the dynamics of these structures in live cells. Here, we used a combined atomic force/optical microscope system to analyze membrane-based cellular events at nanometer-scale resolution in live cells. Imaging the COS-7 cell surface showed detailed structural properties of membrane invagination events corresponding to endocytosis and exocytosis. In addition, the movement of mitochondria and the spatiotemporal dynamics of the cortical F-actin network were directly visualized in vivo. Cortical actin microdomains with sizes ranging from 1.7×10(4) to 1.4×10(5) nm2 were dynamically rearranged by newly appearing actin filaments, which sometimes accompanied membrane invaginations, suggesting that these events are integrated with the dynamic regulation of submembrane organizations maintained by actin turnovers. These results provide novel insights into the structural aspects of the entire cell membrane machinery which can be visualized with high temporal and spatial resolution.
Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Membrana Celular/ultraestrutura , Dinâmica Mitocondrial , Animais , Células COS/ultraestrutura , Membrana Celular/metabolismo , Endocitose , Exocitose , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodosRESUMO
Amyloid ß (Aß) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1ß (IL-1ß) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aß aggregates on IL-1ß production in mouse primary microglia. We prepared Aß oligomer and fibril from Aß (1-42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aß oligomers but not Aß monomers or fibrils induced robust IL-1ß production in the presence of lipopolysaccharide. Moreover, Aß oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aß oligomer-induced IL-1ß production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1ß. Thus, multimerization and fibrillization causes Aß oligomers to lose the ability to induce IL-1ß. These results indicate that Aß oligomers, but not fibrils, induce IL-1ß production in primary microglia in a cathepsin B- and ROS-dependent manner.
Assuntos
Peptídeos beta-Amiloides/imunologia , Catepsina B/imunologia , Interleucina-1beta/imunologia , Microglia/imunologia , Fragmentos de Peptídeos/imunologia , Espécies Reativas de Oxigênio/imunologia , Acetilcisteína/farmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Animais , Catepsina B/antagonistas & inibidores , Reagentes de Ligações Cruzadas/química , Dipeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestruturaRESUMO
In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.
Assuntos
Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Microscopia de Força Atômica , Células HeLa , Humanos , Lamina Tipo B/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Células Tumorais CultivadasRESUMO
Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.
Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Animais , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Endossomos/metabolismo , Endocitose , Clatrina/metabolismo , Mitocôndrias/metabolismo , Mamíferos/metabolismoRESUMO
Live-cell imaging with fluorescent proteins (FPs) is a powerful tool for investigating the exocytosis processes of hormones. However, the secretion process of glucagon-like peptide-1 (GLP-1) has not been visualized by FPs, which might be because tagging FPs inhibits GLP-1 synthesis through the post-translational processing from proglucagon. Here, we have developed FP-tagged GLP-1 by inserting FPs into the middle of GLP-1 and adding the proglucagon signal peptide. Confocal imaging confirmed that GLP-1 fused to FPs with high folding efficiency showed granular structure, in which secretory vesicle markers colocalized. The fluorescence intensity of FP in the culture supernatant from cells treated with KCl or forskolin was significantly increased compared with those from untreated cells. Furthermore, FP-tagged GLP-1 enables direct visualization of stimulation-dependent exocytosis of GLP-1 at a single granule resolution with total internal reflection fluorescence microscopy. FP-tagged GLP-1 might facilitate the screening of GLP-1 secretagogues and the discovery of new antidiabetic drugs.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Vesículas Secretórias , Linhagem Celular , Exocitose , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Fragmentos de Peptídeos , Proglucagon/metabolismo , Vesículas Secretórias/metabolismoRESUMO
Together with lamellipodia and stress fibers, a dynamic network of actin filaments in the cell cortex plays a major role in the maintenance of cell morphology and motility. In contrast to lamellipodia, which have been well studied in various motile cells, the dynamics of actin filaments in the cell cortex have not yet been clarified due to a lack of proper imaging techniques. Here, we utilized high-speed atomic force microscopy for live-cell imaging and analyzed cortical actin dynamics in living cells. We successfully measured the polymerization rate and the frequency of filament synthesis in living COS-7 cells, and examined the associated effects of various inhibitors and actin-binding proteins. Actin filaments are synthesized beneath the plasma membrane and eventually descend into the cytoplasm. The inhibitors, cytochalasin B inhibited the polymerization, while jasplakinolide, inhibited the turnover of actin filaments as well as descension of the newly synthesized filaments, suggesting that actin polymerization near the membrane drives turnover of the cortical actin meshwork. We also determined how actin turnover is maintained and regulated by the free G-actin pool and G-actin binding proteins such as profilin and thymosin ß4, and found that only a small amount of free G-actin was present in the cortex. Finally, we analyzed several different cell types, and found that the mesh size and the orientation of actin filaments were highly divergent, indicating the involvement of various actin-binding proteins in the maintenance and regulation of cortical actin architecture in each cell type.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia de Força Atômica/métodos , Pseudópodes/metabolismo , Animais , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Citocalasina B/farmacologia , Profilinas/metabolismo , Timosina/metabolismoRESUMO
Since the inception of atomic force microscopy (AFM) in 1986, the value of this technology for exploring the structure and biophysical properties of a variety of biological samples has been increasingly recognized. AFM provides the opportunity to both image samples at nanometer resolution and also measure the forces on the surface of the sample. Here, we describe a variety of methods for studying nuclear samples including single nucleic acid molecules, higher-order chromatin structures, the nucleolus, and the nucleus. Protocols to prepare nucleic acids, nucleic acid-protein complexes, reconstituted chromatin, the cell nucleus, and the nucleolus are included, as well as protocols describing how to prepare the AFM substrate and the AFM tip. Finally, we describe how to perform conventional imaging, high-speed imaging, recognition imaging, force spectroscopy, and nanoindentation experiments.
Assuntos
Microscopia de Força Atômica/métodos , Proteínas Nucleares/ultraestrutura , Ácidos Nucleicos/ultraestrutura , DNA/ultraestrutura , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica/instrumentação , RNA/ultraestruturaRESUMO
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Assuntos
Células , Microscopia de Força Atômica/métodos , Microscopia/métodos , Células 3T3 , Animais , Células HeLa , Humanos , CamundongosRESUMO
Using fast-scanning atomic force microscopy, we directly visualized the interaction of Escherichia coli RNA polymerase (RNAP) with DNA at the scan rate of 1-2 frames per second. The analyses showed that the RNAP can locate the promoter region not only by sliding but also by hopping and/or segmental transfer. Upon the addition of 0.05 mM NTPs to the stalled complex, the RNAP molecule pulled the template DNA uni-directionally at the rates of 15 nucleotides/s on average. The present method is potentially applicable to examine a variety of protein-nucleic acid interactions, especially those involved in the process of gene regulation.