RESUMO
Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.
RESUMO
Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5-7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8-10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene-water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O-H bond protruding at the graphene-water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.
RESUMO
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
RESUMO
Developing facile approaches for preparing efficient electrocatalysts is of significance to promote sustainable energy technologies. Here, we report a facile iron-oxidizing bacteria corrosion approach to construct a composite electrocatalyst of nickeliron oxyhydroxides combined with iron oxides. The obtained electrocatalyst shows improved electrocatalytic activity and stability for oxygen evolution, with an overpotential of â¼230 mV to afford the current density of 10 mA cm−2. The incorporation of iron oxides produced by iron-oxidizing bacteria corrosion optimizes the electronic structure of nickeliron oxyhydroxide electrodes, which accounts for the decreased free energy of oxygenate generation and the improvement of OER activity. This work demonstrates a natural bacterial corrosion approach for the facile preparation of efficient electrodes for water oxidation, which may provide interesting insights in the multidisciplinary integration of innovative nanomaterials and emerging energy technologies.
Assuntos
Níquel , Oxigênio , Microbiologia da Água , Corrosão , Compostos Férricos , Ferro , ÁguaRESUMO
The electrochemical reduction reaction of carbon dioxide (CO2RR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO2. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CO2RR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (C2H4) to 61.2% for methane (CH4). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CO2RR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CO2RR technology.
RESUMO
Iron-nitrogen-carbon (Fe-N-C) catalysts, although the most active platinum-free option for the cathodic oxygen reduction reaction (ORR), suffer from poor durability due to the Fe leaching and consequent Fenton effect, limiting their practical application in low-temperature fuel cells. This work demonstrates an integrated catalyst of a platinum-iron (PtFe) alloy planted in an Fe-N-C matrix (PtFe/Fe-N-C) to address this challenge. This novel catalyst exhibits both high-efficiency activity and stability, as evidenced by its impressive half-wave potential (E1/2) of 0.93 V versus reversible hydrogen electrode (vs RHE) and minimal 7 mV decay even after 50,000 potential cycles. Remarkably, it exhibits a very low hydrogen peroxide (H2O2) yield (0.07%) at 0.6 V and maintains this performance with negligible change after 10,000 potential cycles. Fuel cells assembled with this cathode PtFe/Fe-N-C catalyst show exceptional durability, with only 8 mV voltage loss at 0.8 A cm-2 after 30,000 cycles and ignorable current degradation at a voltage of 0.6 V over 85 h. Comprehensive in situ experiments and theoretical calculations reveal that oxygen species spillover from Fe-N-C to PtFe alloy not only inhibits H2O2 production but also eliminates harmful oxygenated radicals. This work paves the way for the design of highly efficient and stable ORR catalysts and has significant implications for the development of next-generation fuel cells.
RESUMO
Sorafenib, an anticancer drug, has been shown to induce ferroptosis in cancer cells. However, resistance to sorafenib greatly limits its therapeutic efficacy, and the exact mechanism of resistance is not fully understood. This study investigated the role of N-Acetyltransferase 10 (NAT10) in influencing the anticancer activity of sorafenib in nasopharyngeal carcinoma (NPC) and its molecular mechanism. NAT10 expression was significantly upregulated in NPC. Mechanistically, NAT10 promotes proteins of solute carrier family 7 member 11 (SLC7A11) expression through ac4C acetylation, inhibiting sorafenib-induced ferroptosis in NPC cells. The combined application of sorafenib and the NAT10 inhibitor remodelin significantly inhibits SLC7A11 expression and promotes ferroptosis in NPC cells. In vivo knockout of NAT10 inhibited the growth of sorafenib-resistant NPC. Our findings suggest that NAT10 inhibition might be a promising therapeutic approach to enhance the anticancer activity of sorafenib.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Sorafenibe , Sorafenibe/farmacologia , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Animais , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Acetiltransferases/metabolismo , Acetiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Masculino , Acetilação/efeitos dos fármacos , FemininoRESUMO
Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.
Assuntos
Neoplasias Nasofaríngeas , Podossomos , Humanos , Cortactina/genética , Cortactina/metabolismo , Carcinoma Nasofaríngeo/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Nasofaríngeas/genética , Invasividade NeoplásicaRESUMO
ConspectusClosed-loop cycling of green hydrogen is a promising alternative to the current hydrocarbon economy for mitigating the energy crisis and environmental pollution. It stores energy from renewable energy sources like solar, wind, and hydropower into the chemical bond of dihydrogen (H2) via (photo)electrochemical water splitting, and then the stored energy can be released on demand through the reverse reactions in H2-O2 fuel cells. The sluggish kinetics of the involved half-reactions like hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR) limit its realization. Moreover, considering the local gas-liquid-solid triphase microenvironments during H2 generation and utilization, rapid mass transport and gas diffusion are critical as well. Accordingly, developing cost-effective and active electrocatalysts featuring three-dimensional hierarchically porous structures are highly desirable to promote the energy conversion efficiency. Traditionally, the synthetic approaches of porous materials include soft/hard templating, sol-gel, 3D printing, dealloying, and freeze-drying, which often need tedious procedures, high temperature, expensive equipment, and/or harsh physiochemical conditions. In contrast, dynamic electrodeposition on bubbles using the in situ formed bubbles as templates can be conducted at ambient conditions with an electrochemical workstation. Moreover, the whole preparation process can be finished within minutes/hours, and the resulting porous materials can be employed as catalytic electrodes directly, avoiding the use of polymeric binders like Nafion and the consequent issues like limited catalyst loading, reduced conductivity, and inhibited mass transport.In this Account, we summarize our contributions to the dynamic electrodeposition on bubbles toward advanced porous electrocatalysts for green hydrogen cycling. These dynamic electrosynthesis strategies include potentiodynamic electrodeposition that linearly scans the applied potentials, galvanostatic electrodeposition that fixes the applied currents, and electroshock which quickly switches the applied potentials. The resulting porous electrocatalysts range from transition metals to alloys, nitrides, sulfides, phosphides, and their hybrids. We mainly focus on the 3D porosity design of the electrocatalysts by tuning the electrosynthesis parameters to tailor the behaviors of bubble co-generation and thus the reaction interface. Then, their electrocatalytic applications for HER, OER, overall water splitting (OWS), biomass oxidation (to replace OER), and HOR are introduced, with a special emphasis on the porosity-promoted activity. Finally, the remaining challenges and future perspective are also discussed. We hope this Account will encourage more efforts into this attractive research field of dynamic electrodeposition on bubbles for various energy catalytic reactions like carbon dioxide/monoxide reduction, nitrate reduction, methane oxidation, chlorine evolution, and others.
RESUMO
BACKGROUND: Regorafenib, a multi-targeted kinase inhibitor, has been used in the treatment of Hepatocellular carcinoma (HCC). The purpose of this study is to investigate the mechanism of Regorafenib in HCC. METHODS: Regorafenib's impact on the sensitivity of HCC cells was assessed using CCK8. Differential gene expression analysis was performed by conducting mRNA sequencing after treatment with Regorafenib. The m6A methylation status of CHOP and differential expression of m6A methylation-related proteins were assessed by RIP and Western Blot. To explore the molecular mechanisms involved in the therapeutic effects of Regorafenib in HCC and the impact of METTL14 and CHOP on Regorafenib treatment, we employed shRNA/overexpression approaches to transfect METTL14 and CHOP genes, as well as conducted in vivo experiments. RESULTS: Treatment with Regorafenib led to a notable decrease in viability and proliferation of SK-Hep-1 and HCC-LM3 cells. The expression level of CHOP was upregulated after Regorafenib intervention, and CHOP underwent m6A methylation. Among the m6A methylation-related proteins, METTL14 exhibited the most significant downregulation. Mechanistic studies revealed that Regorafenib regulated the cell cycle arrest in HCC through METTL14-mediated modulation of CHOP, and the METTL14/CHOP axis affected the sensitivity of HCC to Regorafenib. In vivo, CHOP enhanced the anticancer effect of Regorafenib. CONCLUSION: The inhibition of HCC development by Regorafenib is attributed to its modulation of m6A expression of CHOP, mediated by METTL14, and the METTL14/CHOP axis enhances the sensitivity of HCC to Regorafenib. These findings provide insights into the treatment of HCC and the issue of drug resistance to Regorafenib.
Assuntos
Adenosina/análogos & derivados , Carcinoma Hepatocelular , Pontos de Checagem do Ciclo Celular , Neoplasias Hepáticas , Metiltransferases , Compostos de Fenilureia , Piridinas , Fator de Transcrição CHOP , Humanos , Piridinas/farmacologia , Piridinas/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Animais , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Metiltransferases/metabolismo , Metiltransferases/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos NusRESUMO
Given the fact that the localization of RNAs is closely associated with their functions, techniques developed for tracking the distribution of RNAs in live cells have greatly advanced the study of RNA biology. Recently, innovative application of fluorescent protein-labelled Cas9 and Cas13 into live-cell RNA tracking further enriches the toolbox. However, the Cas9/Cas13 platform, as well as the widely-used MS2-MCP technique, failed to solve the problem of high background noise. It was recently reported that CRISPR/Cas6 would exhibit allosteric alteration after interacting with the Cas6 binding site (CBS) on RNAs. Here, we exploited this feature and designed a Cas6-based switch platform for detecting target RNAs in vivo. Conjugating split-Venus fragments to both ends of the endoribonuclease-mutated Escherichia coli Cas6(dEcCas6) allowed ligand (CBS)-activated split-Venus complementation. We name this platform as Cas6 based Fluorescence Complementation (Cas6FC). In living cells, Cas6FC could detect target RNAs with nearly free background noise. Moreover, as minimal as one copy of CBS (29nt) tagged in an RNA of interest was able to turn on Cas6FC fluorescence, which greatly reduced the odds of potential alteration of conformation and localization of target RNAs. Thus, we developed a new RNA tracking platform inherently with high sensitivity and specificity.
Assuntos
Endorribonucleases , RNA , Sítios de Ligação , Sistemas CRISPR-Cas , Endorribonucleases/metabolismo , Fluorescência , Conformação Molecular , RNA/químicaRESUMO
Single-atom catalysts with maximal atom-utilization have emerged as promising alternatives for chlorine evolution reaction (CER) toward valuable Cl2 production. However, understanding their intrinsic CER activity has so far been plagued due to the lack of well-defined atomic structure controlling. Herein, we prepare and identify a series of atomically dispersed noble metals (e.g., Pt, Ir, Ru) in nitrogen-doped nanocarbons (M1-N-C) with an identical M-N4 moiety, which allows objective activity evaluation. Electrochemical experiments, operando Raman spectroscopy, and quasi-in situ electron paramagnetic resonance spectroscopy analyses collectively reveal that all the three M1-N-C proceed the CER via a direct Cl-mediated Vomer-Heyrovský mechanism with reactivity following the trend of Pt1-N-C>Ir1-N-C>Ru1-N-C. Density functional theory (DFT) calculations reveal that this activity trend is governed by the binding strength of Cl*-Cl intermediate (ΔGCl*-Cl) on M-N4 sites (Pt
RESUMO
Direct CO2 electroreduction to valuable chemicals is critical for carbon neutrality, while its main products are limited to simple C1 /C2 compounds, and traditionally, the anodic O2 byproduct is not utilized. We herein report a tandem electrothermo-catalytic system that fully utilizes both cathodic (i.e., CO) and anodic (i.e., O2 ) products during overall CO2 electrolysis to produce valuable organic amides from arylboronic acids and amines in a separate chemical reactor, following the Pd(II)-catalyzed oxidative aminocarbonylation mechanism. Hexamethylenetetramine (HMT)-incorporated silver and nickel hydroxide carbonate electrocatalysts were prepared for efficient coproduction of CO and O2 with Faradaic efficiencies of 99.3 % and 100 %, respectively. Systematic experiments, operando attenuated total reflection surface-enhanced Fourier transform infrared spectroscopy characterizations and theoretical studies reveal that HMT promotes *CO2 hydrogenation/*CO desorption for accelerated CO2 -to-CO conversion, and O2 inhibits reductive deactivation of the Pd(II) catalyst for enhanced oxidative aminocarbonylation, collectively leading to efficient synthesis of 10 organic amides with high yields of above 81 %. This work demonstrates the effectiveness of a tandem electrothermo-catalytic strategy for economically attractive CO2 conversion and amide synthesis, representing a new avenue to explore the full potential of CO2 utilization.
RESUMO
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800â mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230â hours at a cell voltage of 3.5â V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
RESUMO
Alkene functionalization with a single-atom catalyst (SAC) which merges homogeneous and heterogeneous catalysis is a fascinating route to obtain high-value-added molecules. However, C-N bond formation of alkene with SAC is still unexplored. Herein, a bimetal-organic framework-derived Co-N/C catalyst with an atomically dispersed cobalt center is reported to show good activity of chemoselective aziridination/oxyamination reactions from alkene and hydroxylamine, and late-stage functionalization of complex alkenes and diversified synthetic transformations of the aziridine product further expand the utility of this method. Moreover, this system proceeds without external oxidants and exhibits mild, atom-economic, and recyclable characters. Detailed spectroscopic characterizations and mechanistic studies revealed the structure of the catalytic center and possible intermediates involved in the mechanism cycle.
RESUMO
Nasopharyngeal carcinoma (NPC), the most frequent reason for treatment failure in head and neck tumors, has the greatest incidence of distant metastases. Increased vascular permeability facilitates metastasis. Exosomal microRNAs (miRNAs) have been implicated in the development of the premetastatic niche and are emerging as prospective biomarkers in cancer patients. We discovered that a higher level of miR-455 was connected to a larger propensity for NPC metastasis based on deep sequencing and RT-qPCR. We found that hypoxia promoted NPC exosomes release and increased miR-455 expression in a way that was hypoxia-inducible factor 1-alpha (HIF-1α) dependent. Exosomes from NPC cells with high levels of miR-455 were found to specifically target zonula occludens 1 (ZO-1), increasing the permeability of endothelial monolayers in vitro vascular permeability and transendothelial invasion experiments. Additional in vivo studies showed that zebrafish with sustained miR-455-overexpressing NPC cell xenografts displayed increased tumor cell mass throughout the body. In vivo, zebrafish vascular tight junction integrity was disrupted by exosomes produced by NPC cells with elevated miR-455 expression. Mice-bearing xenografts further supported the finding that exosomes containing miR-455 might reduce ZO-1 expression in addition to promote NPC cell growth. These findings suggest that in a hypoxic microenvironment, exosomal miR-455 released by NPC cells enhances vascular permeability and promotes metastasis by targeting ZO-1. The HIF-1α-miR-455-ZO-1 signaling pathway may be a promising predictor and potential therapeutic target for NPC with metastasis.
Assuntos
Exossomos , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Camundongos , Permeabilidade Capilar , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Hipóxia/genética , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Junções Íntimas/metabolismo , Microambiente Tumoral , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Vascular mimicry (VM) is defined as a vascular channel-like structure composed of tumor cells that correlates with the growth of cancer cells by providing blood circulation. However, whether VM can be formed in dormant cancer cells remains unclear. Our previous research revealed that polyploid giant cancer cells (PGCCs) are specific dormant cells related to the poor prognosis of head and neck cancer. Here, we demonstrated that EBV could promote VM formation by PGCCs in vivo and in vitro. Furthermore, we revealed that the activation of the ERK pathway partly mediated by LMP2A is responsible for stemness, and the acquisition of the stemness phenotype is crucial to the malignant biological behavior of PGCCs. The epithelial-to-mesenchymal transition (EMT) process plays a considerable role in PGCCs, and EMT progression is vital for EBV-positive PGCCs to form VM. This is the first study to reveal that EBV creates plasticity in PGCC-VM and provide a new strategy for targeted anti-tumor therapy.
Assuntos
Herpesvirus Humano 4 , Neoplasias , Humanos , Herpesvirus Humano 4/genética , Transição Epitelial-Mesenquimal/genética , Células Gigantes/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Neoplasias/patologiaRESUMO
Outdoor autonomous mobile robots heavily rely on GPS data for localization. However, GPS data can be erroneous and signals can be interrupted in highly urbanized areas or areas with incomplete satellite coverage, leading to localization deviations. In this paper, we propose a SLAM (Simultaneous Localization and Mapping) system that combines the IESKF (Iterated Extended Kalman Filter) and a factor graph to address these issues. We perform IESKF filtering on LiDAR and inertial measurement unit (IMU) data at the front-end to achieve a more accurate estimation of local pose and incorporate the resulting laser inertial odometry into the back-end factor graph. Furthermore, we introduce a GPS signal filtering method based on GPS state and confidence to ensure that abnormal GPS data is not used in the back-end processing. In the back-end factor graph, we incorporate loop closure factors, IMU preintegration factors, and processed GPS factors. We conducted comparative experiments using the publicly available KITTI dataset and our own experimental platform to compare the proposed SLAM system with two commonly used SLAM systems: the filter-based SLAM system (FAST-LIO) and the graph optimization-based SLAM system (LIO-SAM). The experimental results demonstrate that the proposed SLAM system outperforms the other systems in terms of localization accuracy, especially in cases of GPS signal interruption.
Assuntos
Algoritmos , JulgamentoRESUMO
Hydrogen peroxide (H2 O2 ) and formate are important chemicals used in various chemical manufacturing industries. One promising approach for the simultaneous production of these chemicals is coupling anodic two-electron water oxidation with cathodic CO2 reduction in an electrolyzer using nonprecious bifunctional electrocatalysts. Herein, we report an innovative hybrid electrosynthesis strategy using Zn-doped SnO2 (Zn/SnO2 ) nanodots as bifunctional redox electrocatalysts to achieve Faradaic efficiencies of 80.6 % and 92.2 % for H2 O2 and formate coproduction, respectively, along with excellent stability for at least 60â h at a current density of ≈150â mA cm-2 . Through a combination of physicochemical characterizations, including operando attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), isotope labeling mass spectrometry (MS)/1 H NMR and quasi-in situ electron paramagnetic resonance (EPR), with density functional theory (DFT) calculations, we discovered that the Zn dopant facilitates the coupling of *OH intermediates to promote H2 O2 production and optimizes the adsorption of *OCHO intermediates to accelerate formate formation. Our findings offer new insights into designing more efficient bifunctional electrocatalyst-based pair-electrosynthesis system for the coproduction of H2 O2 and formate feedstocks.