Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Nat Chem Biol ; 19(1): 45-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138140

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Ácidos Nucleicos/genética , Genoma , Sistemas CRISPR-Cas/genética
2.
J Chem Phys ; 161(6)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39136663

RESUMO

X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, and temperature-programmed reaction/desorption have been employed to investigate the reaction of CH3-CHCl-C(=O)Cl on Cu (100), with the aid of density functional theory (DFT) calculations. Experimentally, CH3-CH=C=O (methylketene) is found to be the product from the dechlorination of CH3-CHCl-C(=O)Cl on Cu(100) at 120 K. The CH3-CH=C=O generated on the surface would dimerize to form 2,4-dimethylcyclobutane-1,3-dione below 180 K. In agreement with the experimental findings, our DFT molecular dynamics simulations demonstrate that the dechlorination of CH3-CHCl-C(=O)Cl, resulting in CH3-CH=C=O and two Cl atoms, occurs readily, completing within 0.6 ps at 300 K. The simulations also indicate that the cleavage of the CH-Cl bond precedes that of the C(=O)-Cl bond. The static DFT calculations suggest that the dimerization of CH3-CH=C=O primarily occurs through the coupling of two C=C bonds, which has a lower barrier of 38.08 kJ mol-1 compared to the 69.05 kJ mol-1 barrier for C=C + C=O coupling.

3.
Opt Lett ; 48(1): 117-120, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563384

RESUMO

Spatial light modulators based on metasurfaces have attracted great attention due to their abilities of amplitude and phase modulation. However, the traditional one degree of freedom (1-DOF) tunable metasurfaces are limited by incomplete phase coverage and coupled amplitude and phase modulation. Here, we propose an optimization method for 2-DOF tunable metasurfaces within the framework of temporal coupled mode theory. As a validation of the proposed method, we present a germanium antimony tellurium (GST)-alloy-based 2-DOF tunable reflective metasurface. Full-wave simulation shows that independent modulation of amplitude and phase is realized with full phase coverage and amplitude range from 0 to 0.55. Our proposed design scheme for a 2-DOF tunable metasurface may facilitate the development of high-performance metasurface devices.

4.
Angew Chem Int Ed Engl ; 62(17): e202214987, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36710268

RESUMO

Polymerase chain reaction (PCR)-based nucleic acid testing has played a critical role in disease diagnostics, pathogen surveillance, and many more. However, this method requires a long turnaround time, expensive equipment, and trained personnel, limiting its widespread availability and diagnostic capacity. On the other hand, the clustered regularly interspaced short palindromic repeats (CRISPR) technology has recently demonstrated capability for nucleic acid detection with high sensitivity and specificity. CRISPR-mediated biosensing holds great promise for revolutionizing nucleic acid testing procedures and developing point-of-care diagnostics. This review focuses on recent developments in both fundamental CRISPR biochemistry and CRISPR-based nucleic acid detection techniques. Four ongoing research hotspots in molecular diagnostics-target preamplification-free detection, microRNA (miRNA) testing, non-nucleic-acid detection, and SARS-CoV-2 detection-are also covered.


Assuntos
Técnicas Biossensoriais , COVID-19 , MicroRNAs , Humanos , Sistemas CRISPR-Cas , Patologia Molecular , SARS-CoV-2 , Teste para COVID-19
5.
Opt Express ; 30(22): 39747-39761, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298920

RESUMO

Real-time tracking of fast-moving targets has been utilized in various fields. However, the tracking performance of image-based systems for fast-moving targets is still limited by the huge data throughput and computation. In this study, an image-free target tracking system utilizing a digital micromirror device (DMD) is proposed. The proposed system effectively combines the dual-pixel measurement and window complementary modulation, and the alternating interpolation Kalman filter is implemented to fully use the performance of the DMD and maximize the update rate of the system. The accuracy of the proposed system at the maximum update rate of 22.2 kHz can achieve 0.1 pixels according to the experimental results. Meanwhile, we experimentally demonstrated that the accuracy of the proposed image-free target tracking system is within 0.3 pixels at a maximal velocity of 2 × 104 pixel/s at 22.2 kHz by evaluating the performance of the proposed image-free target tracking system when tracking fast-moving targets with different maximal velocity.

6.
Appl Opt ; 61(11): 3034-3047, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471277

RESUMO

High-accuracy spot target localization is an essential optical measurement technique in fields such as astronomy and biophysics. Random noise generated during the imaging process limits further improvement of centroiding accuracy. Research for centroiding methods can no longer meet the demand for higher accuracy. This limitation is even more severe for low signal to noise ratio (SNR) imaging measurements. This paper proposes an energy filtering method based on time-domain extended image sequences, which is a typical application such as a star tracker. The energy variations of the spot in continuous sequences are analyzed, and the energy is filtered at pixel level. The filtered pixel response that is closer to real energy is involved in the calculation of the centroid. Adaptive variations of filter parameters for different energy distributions are also realized. Both simulations and laboratory experiments are designed to verify the effectiveness of the approach. The results show that this method can effectively and adaptively filter the spot energy at pixel level and further improve centroiding accuracy.

7.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501970

RESUMO

The integrated device for energy supply and sensing (IDESS) is a potential candidate for relieving the energy and space burdens caused by the rising integration degrees of microsystems. In this article, we propose a force sensor based on an interdigital supercapacitor (IDTSC). The capacitance and internal resistance of the IDTSC change under external loads, resulting in a transient current fluctuation at a constant bias voltage, which can be used to sense external force/acceleration. The IDTSC showed a specific energy and specific power of 4.16 Wh/kg and 22.26 W/kg (at 0.1 A/g), respectively, which could maintain an essential energy supply. According to the simulation analysis, the designed IDTSC's current response exhibited good linearity with the external force. In addition, benefiting from its light weight and the applied gel electrolytes, the IDTSC showed good high-g impact sensing performance (from 9.9 × 103× g to 3.2 × 104× g). This work demonstrated the feasibility of realizing an integrated energy supply and force-sensing device by empowering energy storage devices with sensing capabilities.


Assuntos
Aceleração , Eletricidade , Capacitância Elétrica , Simulação por Computador
8.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080982

RESUMO

WiFi energy harvesting is a promising solution for powering microsensors and microsystems through collecting electromagnetic (EM) energies that exist everywhere in modern daily lives. In order to harvest EM energy, we proposed a metamaterial-inspired antenna (MIA) based on the resonant magnetic dipole operating in the WiFi bands. The MIA consists of two metallic split-ring resonators (SRRs), separated by an FR4 dielectric layer, in the broadside coupled configuration. The incident EM waves excite surface currents in the coupled SRRs, and the energy is oscillating between them due to near-field coupling. By varying the vertical distance of the two SRRs, we may achieve impedance matching without complicated matching networks. Collected EM energy can be converted to DC voltages via a rectifier circuit at the output of the coupling coil. Measured results demonstrate that the designed MIA may resonate at 2.4 GHz with a deep-subwavelength form factor (14 mm×14 mm×1.6 mm). The WiFi energy-harvesting capability of the proposed MIA with an embedded one-stage Dickson voltage multiplier has also been evaluated. A rectified DC voltage is approximately 500 mV when the MIA is placed at a distance of 2 cm from the WiFi transmit antenna with a 9 dBm transmitting power. The proposed compact MIA in this paper is of great importance for powering future distributed microsystems.

9.
Cytometry A ; 99(2): 194-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078537

RESUMO

Illumination spot in a flow cytometer is a crucial factor determining the measurement accuracy and stability. The traditional mechanism is to precisely calibrate multiple optical components to convert circular Gaussian beams into elliptical Gaussian beams, making it difficult to shape multiwavelength lasers simultaneously. A diffractive beam shaper for multicolor lasers with high simplicity, only containing one diffractive optical element and one focusing lens is created in this work. It can produce rectangular spots, of which the number, the sizes, and the positions are accurately determined by the incident wavelengths. Demonstrated in the customized microflow cytometer, the coefficient of variations (CV) of the optical signals by the beam shaper are 3.6-6.5%, comparable to those derived from the commercial instrument with 3.3-6.3% CVs. Benefiting from the narrow rectangular spots and the flexibility of diffractively shaped lasers, the measurement of bead sizes with 4-15 µm diameters and the real-time detection of flow velocity from 0.79 to 9.50 m/s with the CV of <5% are achieved. © 2020 International Society for Advancement of Cytometry.


Assuntos
Lasers , Lentes , Citometria de Fluxo , Distribuição Normal
10.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695981

RESUMO

Spoofing attacks are one of the severest threats for global navigation satellite systems (GNSSs). This kind of attack can damage the navigation systems of unmanned air vehicles (UAVs) and other unmanned vehicles (UVs), which are highly dependent on GNSSs. A novel method for GNSS spoofing detection based on a coupled visual/inertial/GNSS positioning algorithm is proposed in this paper. Visual inertial odometry (VIO) has high accuracy for state estimation in the short term and is a good supplement for GNSSs. Coupled VIO/GNSS navigation systems are, unfortunately, also vulnerable when the GNSS is subject to spoofing attacks. The method proposed in this article involves monitoring the deviation between the VIO and GNSS under an optimization framework. A modified Chi-square test triggers the spoofing alarm when the detection factors become abnormal. After spoofing detection, the optimal estimation algorithm is modified to prevent it being deceived by the spoofed GNSS data and to enable it to carry on positioning. The performance of the proposed spoofing detection method is evaluated through a real-world visual/inertial/GNSS dataset and a real GNSS spoofing attack experiment. The results indicate that the proposed method works well even when the deviation caused by spoofing is small, which proves the efficiency of the method.

11.
Appl Soft Comput ; 98: 106897, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33199977

RESUMO

The sudden outbreak of novel coronavirus 2019 (COVID-19) increased the diagnostic burden of radiologists. In the time of an epidemic crisis, we hope artificial intelligence (AI) to reduce physician workload in regions with the outbreak, and improve the diagnosis accuracy for physicians before they could acquire enough experience with the new disease. In this paper, we present our experience in building and deploying an AI system that automatically analyzes CT images and provides the probability of infection to rapidly detect COVID-19 pneumonia. The proposed system which consists of classification and segmentation will save about 30%-40% of the detection time for physicians and promote the performance of COVID-19 detection. Specifically, working in an interdisciplinary team of over 30 people with medical and/or AI background, geographically distributed in Beijing and Wuhan, we are able to overcome a series of challenges (e.g. data discrepancy, testing time-effectiveness of model, data security, etc.) in this particular situation and deploy the system in four weeks. In addition, since the proposed AI system provides the priority of each CT image with probability of infection, the physicians can confirm and segregate the infected patients in time. Using 1,136 training cases (723 positives for COVID-19) from five hospitals, we are able to achieve a sensitivity of 0.974 and specificity of 0.922 on the test dataset, which included a variety of pulmonary diseases.

12.
Anal Chem ; 92(2): 1833-1841, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31858787

RESUMO

Efficient and reliable manipulation of biological particles is crucial in medical diagnosis and chemical synthesis. Inertial microfluidic devices utilizing passive hydrodynamic forces in the secondary flow have drawn considerable attention for their high throughputs, low costs, and harmless particle manipulation. However, as the dominant mechanism, the inertial lift force is difficult to quantitatively analyze because of the uncertainties of its magnitude and direction. The equilibrium position of particles varies along the migration process, thus inducing the instabilities of particle separation. Herein, we present a designable inertial microfluidic chip combining a spiral channel with periodic expansion structures for the sheathless separation of particles with different sizes. The stable vortex-induced lift force arising from the periodic expansion and the Dean drag force significantly enhanced the focusing process and determined the final equilibrium position. The experimental results showed that over 99% of target particles could be isolated with the high target sample purity of 86.12%. In the biological experiment, 93.5% of the MCF-7, 89.5% of the Hela, and 88.6% of the A549 cells were steadily recovered with excellent viabilities to verify the potential of the device in dealing with biological particles over a broad range of throughputs. The device presented in this study can further serve as a lab-on-chip platform for liquid biopsy and diagnostic analysis.


Assuntos
Separação Celular/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Linhagem Celular Tumoral , Separação Celular/instrumentação , Desenho de Equipamento , Humanos , Microfluídica/instrumentação , Microesferas , Tamanho da Partícula , Poliestirenos/química , Poliestirenos/isolamento & purificação
13.
Analyst ; 144(7): 2304-2311, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30672513

RESUMO

MicroRNA (miRNA) is a type of noncoding RNA and plays a crucial role in gene expression regulation. Sensitive identification and detection of miRNA can offer vast information for transcriptome analysis and cancer studies. Conventional PCR and molecular hybridization techniques suffer from low specificity when used for miRNA detection due to the short nucleotide length of miRNA. The extremely low abundance of miRNA in real biological samples also sets higher demands for the sensitivity of detection methods. A novel method based on target-assisted fluorescence resonance energy transfer (FRET) signal amplification was proposed for the simple and ultrasensitive detection of miRNA. A hairpin fluorescence DNA probe could hybridize with target miRNA to expose the hybridization site for the primer. After being duplexed with the nanogold-labeled primer, the fluorescent dye in the DNA probe was quenched via the FRET mechanism. In the presence of a DNA polymerase, primer-activated strand displacement released the miRNA, and then the miRNA strand could recognize and function with another DNA probe. The recycling of target miRNA and a high quenching efficiency of nanogold greatly improved the sensitivity. The detection limit of the method (1.5 fM) was lower than that of the reported strategies using a target cycling reaction, allowing trace detection of miRNA in real samples. By making full use of miRNA sequences, the method could also recognize single-base mismatches and distinguish homologous miRNAs.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Limite de Detecção , MicroRNAs/análise , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Sondas de DNA/genética , Sondas de DNA/metabolismo , Estudos de Viabilidade , Células HeLa , Humanos , Cinética , MicroRNAs/química , MicroRNAs/metabolismo , Técnicas de Amplificação de Ácido Nucleico
14.
Appl Opt ; 58(16): 4560-4568, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251272

RESUMO

High-accuracy spot target detection based on a complementary metal-oxide semiconductor (CMOS) image sensor, such as astronomy magnitude, medicine, and astronomy photometrics, needs accurate pixel response. Because pixels have different silicon structures and read outputting, each pixel has non-uniformity response with specific illumination. The flat-field correction of a CMOS image sensor is crucial before image processing. In this work, a flat-field model and correction method based on spot scale areas of CMOS image sensor pixel response are proposed. Compared with traditional full-plane calibration, this method aims at spot areas to fit most selected normal pixels' mean response curve with different light intensities and exposure times, which can guarantee spot imaging areas with higher accurate pixel response. Finally, the accuracy of this flat-field correction method is evaluated by the influence on spot target extraction accuracy. The experimental results indicate that using this flat-field correction method can decrease the non-uniform variance from 7.34 (LSB/10 bit) to 1.91 (LSB/10 bit) (improved by 74.1%) and reduce the noise effect on spot extraction accuracy, which improves it from 0.3453 pixel to 0.0116 pixel (1σ). The proposed approach solves the problem of non-uniform pixel response and improves imaging SNR for high-accuracy spot target localization.

15.
Appl Opt ; 58(22): 6045-6056, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503925

RESUMO

The traditional top-hat method is a commonly used method that quickly separates targets from a background. It is used for its fast processing speed and wide range of applications on programmable hardware. However, in some important fields such as microfluidic control, medicine, aerospace, and optical measurement, the observed targets are often spotted with different sizes. The formation mechanism of multiscale spots varies from each other so that they can not be successfully extracted and classified by the traditional top-hat method. To ensure the integrity of targets with a specific size and suppressed noise, the imaging mechanism of different types of spots are studied, and an improved top-hat method with a gray-scale value-based transform is proposed. Compared with the traditional top-hat method, the proposed algorithm is more effective in completely removing unwanted spots. The calculated results of the simulated and real images verify the effectiveness of the double top-hat method in extracting targets with a specific size. Additionally, the resolution of this method is up to the parameter k, which has been discussed in this paper. Furthermore, a multi-top-hat algorithm is presented to distinguish spots of different sizes, and it could be used for real-time multiscale target detection and tracking, as well as real-time multiscale target detection and tracking.

16.
Sensors (Basel) ; 19(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336949

RESUMO

For a visual/inertial integrated system, the calibration of extrinsic parameters plays a crucial role in ensuring accurate navigation and measurement. In this work, a novel extrinsic parameter calibration method is developed based on the geometrical constraints in the object space and is implemented by manual swing. The camera and IMU frames are aligned to the system body frame, which is predefined by the mechanical interface. With a swinging motion, the fixed checkerboard provides constraints for calibrating the extrinsic parameters of the camera, whereas angular velocity and acceleration provides constraints for calibrating the extrinsic parameters of the IMU. We exploit the complementary nature of both the camera and IMU, of which the latter assists in the checkerboard corner detection and correction while the former suppresses the effects of IMU drift. The results of the calibration experiment reveal that the extrinsic parameter accuracy reaches 0.04° for each Euler angle and 0.15 mm for each position vector component (1σ).

17.
Nano Lett ; 18(3): 1637-1643, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400972

RESUMO

Along with the rapid development of hybrid electronic-photonic systems, multifunctional devices with dynamic responses have been widely investigated for improving many optoelectronic applications. For years, microelectro-opto-mechanical systems (MEOMS), one of the major approaches to realizing multifunctionality, have demonstrated profound reconfigurability and great reliability. However, modern MEOMS still suffer from limitations in modulation depth, actuation voltage, or miniaturization. Here, we demonstrate a new MEOMS multifunctional platform with greater than 50% optical modulation depth over a broad wavelength range. This platform is realized by a specially designed cantilever array, with each cantilever consisting of vanadium dioxide, chromium, and gold nanolayers. The abrupt structural phase transition of the embedded vanadium dioxide enables the reconfigurability of the platform. Diverse stimuli, such as temperature variation or electric current, can be utilized to control the platform, promising CMOS-compatible operating voltage. Multiple functionalities, including an active enhanced absorber and a reprogrammable electro-optic logic gate, are experimentally demonstrated to address the versatile applications of the MEOMS platform in fields such as communication, energy harvesting, and optical computing.

18.
Small ; 14(14): e1703621, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479803

RESUMO

Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳106 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications.

19.
Cytometry A ; 93(2): 222-231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29346713

RESUMO

High-speed and accurate cell sorting is of great significance for cell analysis regarding both bioresearch and clinical application. Different from the jet-in-air sorting of commercial flow cytometers, sorting in fully enclosed and disposal microfluidic chips can avoid aerosols and crosscontamination, thus contributing to the improvement of biosafety and test accuracy. However, current microfluidic sorters usually require complicated structures, or otherwise cannot attain high throughput. In this article, a sorting mechanism for microfluidics is proposed for the first time based on the jet flow induced by the spark-generated cavitation microbubble that can be easily realized by a pair of electrodes. The sorter was integrated into a microfluidic chip based on three-dimensional (3D) hydrodynamic focusing and a binary optical element (BOE) for laser illumination. Besides, several aspects of the sorting mechanism were studied to optimize the device. It achieved a switching time of 250 µs at the sample flow velocity of 5 m/s and performed the continuous operation at 200 Hz. Both the stability of fluorescence signals and the viability of cells were basically maintained. To conclude, this work explores a new on-chip sorting mechanism which possesses the merits of simple structure, easy control, and fast switching. © 2018 International Society for Advancement of Cytometry.


Assuntos
Eletricidade , Citometria de Fluxo/métodos , Microbolhas , Microfluídica/métodos , Separação Celular/instrumentação , Separação Celular/métodos , Sobrevivência Celular/fisiologia , Fenômenos Eletromagnéticos , Citometria de Fluxo/instrumentação , Células HeLa , Humanos , Microfluídica/instrumentação
20.
Opt Express ; 26(5): 5164-5181, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529724

RESUMO

The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA