Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 151(7): 1488-500, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260138

RESUMO

Piwi-interacting (pi) RNAs are germline-expressed small RNAs linked to epigenetic programming. C. elegans piRNAs are thought to be transcribed as independent gene-like loci. To test this idea and to identify potential transcription start (TS) sites for piRNA precursors, we developed CapSeq, an efficient enzymatic method for 5' anchored RNA profiling. Using CapSeq, we identify candidate TS sites, defined by 70-90 nt sequence tags, for >50% of annotated Pol II loci. Surprisingly, however, these CapSeq tags failed to identify the overwhelming majority of piRNA loci. Instead, we show that the likely piRNA precursors are ∼26 nt capped small (cs) RNAs that initiate precisely 2 nt upstream of mature piRNAs and that piRNA processing or stability requires a U at the csRNA +3 position. Finally, we identify a heretofore unrecognized class of piRNAs processed from csRNAs that are expressed at promoters genome wide, nearly doubling the number of piRNAs available for genome surveillance.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Capuzes de RNA/genética , Processamento Pós-Transcricional do RNA , RNA de Helmintos/genética , RNA Interferente Pequeno/genética , Sítio de Iniciação de Transcrição , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Estudo de Associação Genômica Ampla , Camundongos , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
2.
Mol Cell ; 36(2): 231-44, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19800275

RESUMO

Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Genoma/genética , Células Germinativas/metabolismo , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de RNA , Temperatura
3.
Proc Natl Acad Sci U S A ; 107(8): 3582-7, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133583

RESUMO

Argonaute (AGO) proteins interact with distinct classes of small RNAs to direct multiple regulatory outcomes. In many organisms, including plants, fungi, and nematodes, cellular RNA-dependent RNA polymerases (RdRPs) use AGO targets as templates for amplification of silencing signals. Here, we show that distinct RdRPs function sequentially to produce small RNAs that target endogenous loci in Caenorhabditis elegans. We show that DCR-1, the RdRP RRF-3, and the dsRNA-binding protein RDE-4 are required for the biogenesis of 26-nt small RNAs with a 5' guanine (26G-RNAs) and that 26G-RNAs engage the Piwi-clade AGO, ERGO-1. Our findings support a model in which targeting by ERGO-1 recruits a second RdRP (RRF-1 or EGO-1), which in turn transcribes 22G-RNAs that interact with worm-specific AGOs (WAGOs) to direct gene silencing. ERGO-1 targets exhibit a nonrandom distribution in the genome and appear to include many gene duplications, suggesting that this pathway may control overexpression resulting from gene expansion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Interferência de RNA , RNA Interferente Pequeno/biossíntese , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endorribonucleases/metabolismo , Inativação Gênica , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III , Transcrição Gênica
4.
Curr Biol ; 17(4): R136-9, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17307049

RESUMO

During translation, mRNA is threaded through the ribosome in precise and directional three-nucleotide steps. A recent paper identifies a new GTPase, LepA, which catalyzes unexpected one-codon backward movement on the ribosome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/metabolismo , Ribossomos/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Códon/genética , Guanosina Trifosfato/metabolismo , Fatores de Iniciação de Peptídeos , Ribossomos/metabolismo
5.
RNA ; 14(8): 1526-31, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18567817

RESUMO

Peptide release on the ribosome is catalyzed by protein release factors (RFs) on recognition of stop codons positioned in the A site of the small ribosomal subunit. Here we show that the 2' OH of the peptidyl-tRNA substrate plays an essential role in catalysis of the peptide release reaction. These observations parallel earlier studies of the mechanism of the peptidyl transfer reaction and argue that related mechanisms are at the heart of catalysis for these reactions.


Assuntos
Terminação Traducional da Cadeia Peptídica , Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/química
6.
Front Genet ; 5: 416, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505902

RESUMO

In the past 20 years, the tiny soil nematode Caenorhabditis elegans has provided critical insights into our understanding of the breadth of small RNA-mediated gene regulatory activities. The first microRNA was identified in C. elegans in 1993, and the understanding that dsRNA was the driving force behind RNA-mediated gene silencing came from experiments performed in C. elegans in 1998. Likewise, early genetic screens in C. elegans for factors involved in RNA interference pointed to conserved mechanisms for small RNA-mediated gene silencing pathways, placing the worm squarely among the founding fathers of a now extensive field of molecular biology. Today, the worm continues to be at the forefront of ground-breaking insight into small RNA-mediated biology. Recent studies have revealed with increasing mechanistic clarity that C. elegans possesses an extensive nuclear small RNA regulatory network that encompasses not only gene silencing but also gene activating roles. Further, a portrait is emerging whereby small RNA pathways play key roles in integrating responses to environmental stimuli and transmitting epigenetic information about such responses from one generation to the next. Here we discuss endogenous small RNA pathways in C. elegans and the insight worm biology has provided into the mechanisms employed by these pathways. We touch on the increasingly spectacular diversity of small RNA biogenesis and function, and discuss the relevance of lessons learned in the worm for human biology.

7.
Annu Rev Microbiol ; 62: 353-73, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18544041

RESUMO

Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.


Assuntos
Biossíntese Peptídica , Terminação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Mimetismo Molecular , Mutação , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Conformação Proteica , RNA de Transferência/genética , RNA de Transferência/metabolismo
8.
Mol Cell ; 28(4): 533-43, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18042450

RESUMO

Peptide release on the ribosome is catalyzed in the large subunit peptidyl transferase center by release factors on recognition of stop codons in the small subunit decoding center. Here we examine the role of the decoding center in this process. Mutation of decoding center nucleotides or removal of 2'OH groups from the codon--deleterious in the related process of tRNA selection--has only mild effects on peptide release. The miscoding antibiotic paromomycin, which binds the decoding center and promotes the critical steps of tRNA selection, instead dramatically inhibits peptide release. Differences in the kinetic mechanism of paromomycin inhibition on stop and sense codons, paired with correlated structural changes monitored by chemical footprinting, suggest that recognition of stop codons by release factors induces specific structural rearrangements in the small subunit decoding center. We propose that, like other steps in translation, the specificity of peptide release is achieved through an induced-fit mechanism.


Assuntos
Códon de Terminação/metabolismo , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/química , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Desoxirribonucleotídeos/farmacologia , Cinética , Modelos Biológicos , Mutação/genética , Paromomicina/farmacologia , Ligação Proteica/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Relação Estrutura-Atividade
9.
RNA ; 12(1): 33-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16373492

RESUMO

Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.


Assuntos
Peptidil Transferases/metabolismo , Peptidil Transferases/farmacocinética , RNA Ribossômico/química , Ribossomos/enzimologia , Sítios de Ligação , Catálise , Concentração de Íons de Hidrogênio , Mutação , Puromicina/metabolismo , RNA Ribossômico/genética , Ribossomos/química , Ribossomos/genética
10.
Methods ; 36(3): 305-12, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16076457

RESUMO

As it has become increasingly clear that the RNA components of the ribosome are central to its function, the in vitro analysis of mutations in the ribosomal RNAs has become an important tool for understanding the molecular details of ribosome function. However, the frequent dominant lethal phenotypes of mutations at interesting rRNA residues has long presented a hurdle to this analysis, as their lethality has rendered it impossible to generate pure populations of in vivo-derived ribosomes for study. We present here the details of a method for affinity purification of ribosomes bearing any mutation in the 16S or 23S rRNA and demonstrate that ribosomes purified using this technology are highly active in the several steps of translation we have examined.


Assuntos
Cromatografia de Afinidade/métodos , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Ribossomos/química , Sequência de Bases , Dados de Sequência Molecular , Mutação , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , Ribossomos/genética
11.
Cell ; 117(5): 589-99, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15163407

RESUMO

Peptide bond formation and peptide release are catalyzed in the active site of the large subunit of the ribosome where universally conserved nucleotides surround the CCA ends of the peptidyl- and aminoacyl-tRNA substrates. Here, we describe the use of an affinity-tagging system for the purification of mutant ribosomes and analysis of four universally conserved nucleotides in the innermost layer of the active site: A2451, U2506, U2585, and A2602. While pre-steady-state kinetic analysis of the peptidyl transferase activity of the mutant ribosomes reveals substantially reduced rates of peptide bond formation using the minimal substrate puromycin, their rates of peptide bond formation are unaffected when the substrates are intact aminoacyl-tRNAs. These mutant ribosomes do, however, display substantial defects in peptide release. These results reveal a view of the catalytic center in which an inner shell of conserved nucleotides is pivotal for peptide release, while an outer shell is responsible for promoting peptide bond formation.


Assuntos
Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Cromatografia de Afinidade , Sequência Conservada , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Magnésio/metabolismo , Mutação , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/farmacologia , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA