Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
RNA ; 30(6): 680-694, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38429100

RESUMO

Genome-derived microRNAs (miRNAs or miRs) govern posttranscriptional gene regulation and play important roles in various cellular processes and disease progression. While chemo-engineered miRNA mimics or biosimilars made in vitro are widely available and used, miRNA agents produced in vivo are emerging to closely recapitulate natural miRNA species for research. Our recent work has demonstrated the success of high-yield, in vivo production of recombinant miRNAs by using human tRNA (htRNA) fused precursor miRNA (pre-miR) carriers. In this study, we aim to compare the production of bioengineered RNA (BioRNA) molecules with glycyl versus leucyl htRNA fused hsa-pre-miR-34a carriers, namely, BioRNAGly and BioRNALeu, respectively, and perform the initial functional assessment. We designed, cloned, overexpressed, and purified a total of 48 new BioRNA/miRNAs, and overall expression levels, final yields, and purities were revealed to be comparable between BioRNAGly and BioRNALeu molecules. Meanwhile, the two versions of BioRNA/miRNAs showed similar activities to inhibit non-small cell lung cancer cell viability. Interestingly, functional analyses using model BioRNA/miR-7-5p demonstrated that BioRNAGly/miR-7-5p exhibited greater efficiency to regulate a known target gene expression (EGFR) than BioRNALeu/miR-7-5p, consistent with miR-7-5p levels released in cells. Moreover, BioRNAGly/miR-7-5p showed comparable or slightly greater activities to modulate MRP1 and VDAC1 expression, compared with miRCURY LNA miR-7-5p mimic. Computational modeling illustrated overall comparable 3D structures for exemplary BioRNA/miRNAs with noticeable differences in htRNA species and payload miRNAs. These findings support the utility of hybrid htRNA/hsa-pre-miR-34a as reliable carriers for RNA molecular bioengineering, and the resultant BioRNAs serve as functional biologic RNAs for research and development.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Bioengenharia/métodos , RNA de Transferência/genética , Linhagem Celular Tumoral
2.
Mol Pharmacol ; 106(1): 13-20, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38719476

RESUMO

The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro), lumasiran (Oxlumo), inclisiran (Leqvio), vutrisiran (Amvuttra), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action. SIGNIFICANCE STATEMENT: The common and unique chemistry and molecular pharmacology of six FDA-approved siRNA therapeutics are summarized, in which nedosiran is newly approved. We point out rather a surprisingly mechanistic action as miRNAs for five siRNA therapeutics and discuss the differences and similarities between siRNAs and miRNAs that supports using a general and unified term "RNAi" therapeutics to align with current drug nomenclature criteria in pharmacology based on mechanism of action and embraces broader forms and growing number of novel RNAi therapeutics.


Assuntos
RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , Terapêutica com RNAi/métodos , Interferência de RNA , Animais , MicroRNAs/genética
3.
J Pharmacol Exp Ther ; 384(1): 133-154, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35680378

RESUMO

RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.


Assuntos
Produtos Biológicos , MicroRNAs , Interferência de RNA , Terapêutica com RNAi , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , MicroRNAs/metabolismo , Bioengenharia
4.
Drug Metab Dispos ; 51(6): 685-699, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948592

RESUMO

The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.


Assuntos
DNA Recombinante , MicroRNAs , MicroRNAs/genética , RNA Interferente Pequeno/genética , Taxa de Depuração Metabólica , Tecnologia , Proteínas Recombinantes , Farmacocinética
5.
Pharmacol Rev ; 72(4): 862-898, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929000

RESUMO

RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.


Assuntos
RNA/efeitos dos fármacos , RNA/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Betacoronavirus , COVID-19 , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coronavirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/organização & administração , Descoberta de Drogas , Humanos , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Pandemias , Pneumonia Viral/tratamento farmacológico , RNA/efeitos adversos , RNA Antissenso/farmacologia , RNA Antissenso/uso terapêutico , RNA Guia de Cinetoplastídeos/farmacologia , RNA Guia de Cinetoplastídeos/uso terapêutico , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/farmacologia , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/farmacologia , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , RNA Viral/efeitos dos fármacos , Ribonucleases/metabolismo , Riboswitch/efeitos dos fármacos , SARS-CoV-2
6.
Pharmacol Res ; 182: 106324, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750301

RESUMO

The nuclear receptor RORγ is a major driver of autoimmune diseases and certain types of cancer due to its aberrant function in T helper 17 (Th17) cell differentiation and tumor cholesterol metabolism, respectively. Compound screening using the classic receptor-coactivator interaction perturbation scheme led to identification of many small-molecule modulators of RORγ(t). We report here that inverse agonists/antagonists of RORγ such as VTP-43742 derivative VTP-23 and TAK828F, which can potently inhibit the inflammatory gene program in Th17 cells, unexpectedly lack high potency in inhibiting the growth of TNBC tumor cells. In contrast, antagonists such as XY018 and GSK805 that strongly suppress tumor cell growth and survival display only modest activities in reducing Th17-related cytokine expression. Unexpectedly, we found that VTP-23 significantly induces the cholesterol biosynthesis program in TNBC cells. Our further mechanistic analyses revealed that VTP-23 enhances the local chromatin accessibility, H3K27ac mark and the cholesterol master regulator SREBP2 recruitment at the RORγ binding sites, whereas XY018 exerts the opposite activities. Yet, they display similar inhibitory effects on circadian rhythm program. Similar distinctions and contrasting activities between TAK828F and SR2211 in their effects on local chromatin structure at Il17 genes were also observed. Together, our study shows for the first-time that structurally distinct RORγ antagonists possess different or even contrasting activities in tissue/cell-specific manner. Our findings also highlight that the activities at natural chromatin are key determinants of RORγ modulators' tissue selectivity.


Assuntos
Neoplasias de Mama Triplo Negativas , Colesterol/metabolismo , Cromatina/metabolismo , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17 , Neoplasias de Mama Triplo Negativas/metabolismo
7.
J Pharmacol Exp Ther ; 377(3): 305-315, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33712506

RESUMO

Understanding pharmacokinetic (PK)-pharmacodynamic (PD) relationships is essential in translational research. Existing PK-PD models for combination therapy lack consideration of quantitative contributions from individual drugs, whereas interaction factor is always assigned arbitrarily to one drug and overstretched for the determination of in vivo pharmacologic synergism. Herein, we report a novel generic PK-PD model for combination therapy by considering apparent contributions from individual drugs coadministered. Doxorubicin (Dox) and sorafenib (Sor) were used as model drugs whose PK data were obtained in mice and fit to two-compartment model. Xenograft tumor growth was biphasic in mice, and PD responses were described by three-compartment transit models. This PK-PD model revealed that Sor (contribution factor = 1.62) had much greater influence on overall tumor-growth inhibition than coadministered Dox (contribution factor = 0.644), which explains the mysterious clinical findings on remarkable benefits for patients with cancer when adding Sor to Dox treatment, whereas there were none when adding Dox to Sor therapy. Furthermore, the combination index method was integrated into this predictive PK-PD model for critical determination of in vivo pharmacologic synergism that cannot be correctly defined by the interaction factor in conventional models. In addition, this new PK-PD model was able to identify optimal dosage combination (e.g., doubling experimental Sor dose and reducing Dox dose by 50%) toward much greater degree of tumor-growth inhibition (>90%), which was consistent with stronger synergy (combination index = 0.298). These findings demonstrated the utilities of this new PK-PD model and reiterated the use of valid method for the assessment of in vivo synergism. SIGNIFICANCE STATEMENT: A novel pharmacokinetic (PK)-pharmacodynamic (PD) model was developed for the assessment of combination treatment by considering contributions from individual drugs, and combination index method was incorporated to critically define in vivo synergism. A greater contribution from sorafenib to tumor-growth inhibition than that of coadministered doxorubicin was identified, offering explanation for previously inexplicable clinical observations. This PK-PD model and strategy shall have broad applications to translational research on identifying optimal dosage combinations with stronger synergy toward improved therapeutic outcomes.


Assuntos
Doxorrubicina , Terapia Combinada , Interações Medicamentosas
8.
Mol Pharmacol ; 98(6): 686-694, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33051382

RESUMO

Cancer cells are dysregulated and addicted to continuous supply and metabolism of nutritional glucose and amino acids (e.g., arginine) to drive the synthesis of critical macromolecules for uncontrolled growth. Recent studies have revealed that genome-derived microRNA (miRNA or miR)-1291-5p (miR-1291-5p or miR-1291) may modulate the expression of argininosuccinate synthase (ASS1) and glucose transporter protein type 1 (GLUT1). We also developed a novel approach to produce recombinant miR-1291 agents for research, which are distinguished from conventional chemo-engineered miRNA mimics. Herein, we firstly demonstrated that bioengineered miR-1291 agent was selectively processed to high levels of target miR-1291-5p in human pancreatic cancer (PC) cells. After the suppression of ASS1 protein levels, miR-1291 perturbed arginine homeostasis and preferably sensitized ASS1-abundant L3.3 cells to arginine deprivation therapy. In addition, miR-1291 treatment reduced the protein levels of GLUT1 in both AsPC-1 and PANC-1 cells, leading to a lower glucose uptake (deceased > 40%) and glycolysis capacity (reduced approximately 50%). As a result, miR-1291 largely improved cisplatin efficacy in the inhibition of PC cell viability. Our results demonstrated that miR-1291 was effective to sensitize PC cells to arginine deprivation treatment and chemotherapy through targeting ASS1- and GLUT1-mediated arginolysis and glycolysis, respectively, which may provide insights into understanding miRNA signaling underlying cancer cell metabolism and development of new strategies for the treatment of lethal PC. SIGNIFICANCE STATEMENT: Many anticancer drugs in clinical use and under investigation exert pharmacological effects or improve efficacy of coadministered medications by targeting cancer cell metabolism. Using new recombinant miR-1291 agent, we revealed that miR-1291 acts as a metabolism modulator in pancreatic carcinoma cells through the regulation of argininosuccinate synthase- and glucose transporter protein type 1-mediated arginolysis and glycolysis. Consequently, miR-1291 effectively enhanced the efficacy of arginine deprivation (pegylated arginine deiminase) and chemotherapy (cisplatin), offering new insights into development of rational combination therapies.


Assuntos
Antineoplásicos/farmacologia , MicroRNAs/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , RNA/farmacologia , Antineoplásicos/uso terapêutico , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , MicroRNAs/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA/uso terapêutico , Neoplasias Pancreáticas
9.
Drug Metab Dispos ; 48(12): 1257-1263, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33051247

RESUMO

Pharmacological interventions for hepatocellular carcinoma (HCC) are hindered by complex factors, and rational combination therapy may be developed to improve therapeutic outcomes. Very recently, we have identified a bioengineered microRNA let-7c-5p (or let-7c) agent as an effective inhibitor against HCC in vitro and in vivo. In this study, we sought to identify small-molecule drugs that may synergistically act with let-7c against HCC. Interestingly, we found that let-7c exhibited a strong synergism with 5-fluorouracil (5-FU) in the inhibition of HCC cell viability as manifested by average combination indices of 0.3 and 0.5 in Hep3B and Huh7 cells, respectively. By contrast, coadministration of let-7c with doxorubicin or sorafenib inhibited HCC cell viability with, rather surprisingly, no or minimal synergy. Further studies showed that protein levels of multidrug resistance-associated protein (MRP) ATP-binding cassette subfamily C member 5 (MRP5/ABCC5), a 5-FU efflux transporter, were reduced around 50% by let-7c in HCC cells. This led to a greater degree of intracellular accumulation of 5-FU in Huh7 cells as well as the second messenger cyclic adenosine monophosphate, an endogenous substrate of MRP5. Since 5-FU is an irreversible inhibitor of thymidylate synthetase (TS), we investigated the interactions of let-7c with 5-FU at pharmacodynamic level. Interestingly, our data revealed that let-7c significantly reduced TS protein levels in Huh7 cells, which was associated with the suppression of upstream transcriptional factors as well as other regulatory factors. Collectively, these results indicate that let-7c interacts with 5-FU at both pharmacokinetic and pharmacodynamic levels, and these findings shall offer insight into molecular mechanisms of synergistic drug combinations. SIGNIFICANCE STATEMENT: Combination therapy is a common strategy that generally involves pharmacodynamic interactions. After identifying a strong synergism between let-7c-5p and 5-fluorouracil (5-FU) against hepatocellular carcinoma cell viability, we reveal the involvement of both pharmacokinetic and pharmacodynamic mechanisms. In particular, let-7c enhances 5-FU exposure (via suppressing ABCC5/MRP5 expression) and cotargets thymidylate synthase with 5-FU (let-7c reduces protein expression, whereas 5-FU irreversibly inactivates enzyme). These findings provide insight into developing rational combination therapies based on pharmacological mechanisms.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Fluoruracila/farmacocinética , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/administração & dosagem , MicroRNAs/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
10.
Appl Microbiol Biotechnol ; 104(5): 1927-1937, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31953559

RESUMO

Genome-derived noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), play an essential role in the control of target gene expression underlying various cellular processes, and dysregulation of ncRNAs is involved in the pathogenesis and progression of various diseases in virtually all species including humans. Understanding ncRNA biology has opened new avenues to develop novel RNA-based therapeutics. Presently, ncRNA research and drug development is dominated by the use of ncRNA mimics that are synthesized chemically in vitro and supplemented with extensive and various types of artificial modifications and thus may not necessarily recapitulate the properties of natural RNAs generated and folded in living cells in vivo. Therefore, there are growing interests in developing novel technologies for in vivo production of RNA molecules. The two most recent major breakthroughs in achieving an efficient, large-scale, and cost-effective fermentation production of recombinant or bioengineered RNAs (e.g., tens of milligrams from 1 L of bacterial culture) are (1) using stable RNA carriers and (2) direct overexpression in RNase III-deficient bacteria, while other approaches offer a low yield (e.g., nano- to microgram scales per liter). In this article, we highlight these novel microbial fermentation-based technologies that have shifted the paradigm to the production of true biological ncRNA molecules for research and development.


Assuntos
Bactérias/metabolismo , Bactérias/genética , Bioengenharia , Fermentação , RNA não Traduzido/biossíntese , RNA não Traduzido/genética
11.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899231

RESUMO

The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments. The HMOX1 pathway can inhibit platelet aggregation, and can have anti-thrombotic and anti-inflammatory properties, amongst others, all of which are critical medical conditions observed in COVID-19 patients. Here, we review the potential of modulating the HMOX1-ORF3a nexus to regulate the innate immune response for therapeutic benefits in COVID-19 patients. We also review other potential treatment strategies and suggest novel synthetic and natural compounds that may have the potential for future development in clinic.


Assuntos
Infecções por Coronavirus/metabolismo , Heme Oxigenase-1/metabolismo , Pneumonia Viral/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Antivirais/uso terapêutico , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Heme Oxigenase-1/genética , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Proteínas Viroporinas
12.
Appl Microbiol Biotechnol ; 103(15): 6107-6117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187211

RESUMO

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), regulate target gene expression and can be used as tools for understanding biological processes and identifying new therapeutic targets. Currently, ncRNA molecules for research and therapeutic use are limited to ncRNA mimics made by chemical synthesis. We have recently established a high-yield and cost-effective method of producing bioengineered or biologic ncRNA agents (BERAs) through bacterial fermentation, which is based on a stable tRNA/pre-miR-34a carrier (~ 180 nt) that accommodates target small RNAs. Nevertheless, it remains a challenge to heterogeneously express longer ncRNAs (e.g., > 260 nt), and it is unknown if single BERA may carry multiple small RNAs. To address this issue, we hypothesized that an additional human pre-miR-34a could be attached to the tRNA/pre-miR-34a scaffold to offer a new tRNA/pre-miR-34a/pre-miR-34a carrier (~ 296 nt) for the accommodation of multiple small RNAs. We thus designed ten different combinatorial BERAs (CO-BERAs) that include different combinations of miRNAs, siRNAs, and antagomirs. Our data showed that all target CO-BERAs were successfully expressed in Escherichia coli at high levels, greater than 40% in total bacterial RNAs. Furthermore, recombinant CO-BERAs were purified to a high degree of homogeneity by fast protein liquid chromatography methods. In addition, CO-BERAs exhibited strong anti-proliferative activities against a variety of human non-small cell lung cancer cell lines. These results support the production of long ncRNA molecules carrying different warhead small RNAs for multi-targeting which may open avenues for developing new biologic RNAs as experimental, diagnostic, and therapeutic tools.


Assuntos
Antagomirs/biossíntese , Antagomirs/genética , Bioengenharia/métodos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Cromatografia Líquida , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , RNA Longo não Codificante/isolamento & purificação
13.
J Pharmacol Exp Ther ; 365(3): 494-506, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602831

RESUMO

Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics.


Assuntos
Perfilação da Expressão Gênica , Engenharia Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Neoplasias Pulmonares/patologia , Camundongos
14.
Drug Metab Dispos ; 46(1): 2-10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061583

RESUMO

The nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications. Herein, we report successful high-level expression of recombinant siRNA against NRF2 in Escherichia coli using our newly established noncoding RNA bioengineering technology, which was purified to >99% homogeneity using an anion-exchange fast protein liquid chromatography method. Bioengineered NRF2-siRNA was able to significantly knock down NRF2 mRNA and protein levels in human OS 143B and MG63 cells, and subsequently suppressed the expression of NRF2-regulated oxidative enzymes [heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1] and elevated intracellular levels of reactive oxygen species. In addition, recombinant NRF2-siRNA was effective to sensitize both 143B and MG63 cells to doxorubicin, cisplatin, and sorafenib, which was associated with significant downregulation of NRF2-targeted ATP-binding cassette (ABC) efflux transporters (ABCC3, ABCC4, and ABCG2). These findings support that targeting NRF2 signaling pathways may improve the sensitivity of cancer cells to chemotherapy, and bioengineered siRNA molecules should be added to current tools for related research.


Assuntos
Antineoplásicos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Osteossarcoma/tratamento farmacológico , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Bioengenharia/métodos , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes/métodos , Heme Oxigenase-1/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteossarcoma/patologia , Estresse Oxidativo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
15.
Carcinogenesis ; 38(4): 474-483, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334197

RESUMO

Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C-dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Proliferação de Células/genética , Senescência Celular/genética , PPAR alfa/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Neoplasias/genética , Oxirredução
16.
Drug Metab Dispos ; 45(5): 512-522, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254952

RESUMO

MicroRNAs (miRNAs or miRs), including miR-34a, have been shown to regulate nuclear receptor, drug-metabolizing enzyme, and transporter gene expression in various cell model systems. However, to what degree miRNAs affect pharmacokinetics (PK) at the systemic level remains unknown. In addition, miR-34a replacement therapy represents a new cancer treatment strategy, although it is unknown whether miR-34a therapeutic agents could elicit any drug-drug interactions. To address this question, we refined a practical single-mouse PK approach and investigated the effects of a bioengineered miR-34a agent on the PK of several cytochrome P450 probe drugs (midazolam, dextromethorphan, phenacetin, diclofenac, and chlorzoxazone) administered as a cocktail. This approach involves manual serial blood microsampling from a single mouse and requires a sensitive liquid chromatography-tandem mass spectrometry assay, which was able to illustrate the sharp changes in midazolam PK by ketoconazole and pregnenolone 16α-carbonitrile as well as phenacetin PK by α-naphthoflavone and 3-methylcholanthrene. Surprisingly, 3-methylcholanthrene also decreased systemic exposure to midazolam, whereas both pregnenolone 16α-carbonitrile and 3-methylcholanthrene largely reduced the exposure to dextromethorphan, diclofenac, and chlorzoxazone. Finally, the biologic miR-34a agent had no significant effects on the PK of cocktail drugs but caused a marginal (45%-48%) increase in systemic exposure to midazolam, phenacetin, and dextromethorphan in mice. In vitro validation of these data suggested that miR-34a slightly attenuated intrinsic clearance of dextromethorphan. These findings from single-mouse PK and corresponding mouse liver microsome models suggest that miR-34a might have minor or no effects on the PK of coadministered cytochrome P450-metabolized drugs.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , MicroRNAs/farmacologia , Animais , Clorzoxazona/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Dextrometorfano/farmacocinética , Diclofenaco/farmacocinética , Interações Medicamentosas , Masculino , Camundongos , Midazolam/farmacocinética , Farmacocinética , Fenacetina/farmacocinética
17.
Nucleic Acids Res ; 43(7): 3857-69, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25800741

RESUMO

RNA research and therapy relies primarily on synthetic RNAs. We employed recombinant RNA technology toward large-scale production of pre-miRNA agents in bacteria, but found the majority of target RNAs were not or negligibly expressed. We thus developed a novel strategy to achieve consistent high-yield biosynthesis of chimeric RNAs carrying various small RNAs (e.g. miRNAs, siRNAs and RNA aptamers), which was based upon an optimal noncoding RNA scaffold (OnRS) derived from tRNA fusion pre-miR-34a (tRNA/mir-34a). Multi-milligrams of chimeric RNAs (e.g. OnRS/miR-124, OnRS/GFP-siRNA, OnRS/Neg (scrambled RNA) and OnRS/MGA (malachite green aptamer)) were readily obtained from 1 l bacterial culture. Deep sequencing analyses revealed that mature miR-124 and target GFP-siRNA were selectively released from chimeric RNAs in human cells. Consequently, OnRS/miR-124 was active in suppressing miR-124 target gene expression and controlling cellular processes, and OnRS/GFP-siRNA was effective in knocking down GFP mRNA levels and fluorescent intensity in ES-2/GFP cells and GFP-transgenic mice. Furthermore, the OnRS/MGA sensor offered a specific strong fluorescence upon binding MG, which was utilized as label-free substrate to accurately determine serum RNase activities in pancreatic cancer patients. These results demonstrate that OnRS-based bioengineering is a common, robust and versatile strategy to assemble various types of small RNAs for broad applications.


Assuntos
RNA/biossíntese , Animais , Sequência de Bases , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Conformação de Ácido Nucleico , RNA/genética , RNA/fisiologia , Recombinação Genética
18.
Biopharm Drug Dispos ; 38(5): 326-339, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28102538

RESUMO

The liver and kidney functions of recipients of liver transplantation (LT) surgery with heart beating (HBD, n = 13) or living donors (LD, n = 9) with different cold ischemia times were examined during the neohepatic phase for the elimination of rocuronium bromide (ROC, cleared by liver and kidney) and tranexamic acid (TXA, cleared by kidney). Solid phase micro-extraction and LC-MS/MS was applied to determine the plasma concentrations of ROC and TXA, and creatinine was determined by standard laboratory methods. Metabolomics and the relative expressions of miR-122, miR-148a and γ-glutamyltranspeptidase (GGT), liver injury biomarkers, were also measured. The ROC clearance for HBD was significantly lower than that for LD (0.147 ± 0.052 vs. 0.265 ± 0.148 ml·min-1 ·g-1 liver) after intravenous injection (0.6 mg·kg-1 ). The clearance of TXA, a compound cleared by glomerular filtration, given as a 1 g bolus followed by infusion (10 mg·kg-1 ·h-1 ), was similar between HBD and LD groups (~ 1 ml·min-1 ·kg-1 ). The TXA clearance in both groups was lower than the GFR, showing a small extent of hepatorenal coupling. The miR-122 and miR-148a expressions were similar for the HBD and LD groups, whereas GGT expression was significantly increased for HBD. The lower ROC clearance and the higher GGT levels in the HBD group of longer cold ischemia times performed worse than the LD group during the neophase. Metabololmics further showed clusters of bile acids, phospholipids and lipid ω-oxidation products for the LD and HBD groups. In conclusion, ROC CL and GGT expression, and metabolomics could serve as sensitive indices of early graft function. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Falência Hepática , Transplante de Fígado , Doadores de Tecidos , Adulto , Idoso , Androstanóis/sangue , Androstanóis/farmacocinética , Biomarcadores/análise , Feminino , Humanos , Falência Hepática/genética , Falência Hepática/metabolismo , Masculino , Metabolômica , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Projetos Piloto , Rocurônio , Ácido Tranexâmico/sangue , Ácido Tranexâmico/farmacocinética , gama-Glutamiltransferase/genética
19.
Drug Metab Dispos ; 44(3): 308-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26566807

RESUMO

Knowledge of drug absorption, distribution, metabolism, and excretion (ADME) or pharmacokinetics properties is essential for drug development and safe use of medicine. Varied or altered ADME may lead to a loss of efficacy or adverse drug effects. Understanding the causes of variations in drug disposition and response has proven critical for the practice of personalized or precision medicine. The rise of noncoding microRNA (miRNA) pharmacoepigenetics and pharmacoepigenomics has come with accumulating evidence supporting the role of miRNAs in the modulation of ADME gene expression and then drug disposition and response. In this article, we review the advances in miRNA pharmacoepigenetics including the mechanistic actions of miRNAs in the modulation of Phase I and II drug-metabolizing enzymes, efflux and uptake transporters, and xenobiotic receptors or transcription factors after briefly introducing the characteristics of miRNA-mediated posttranscriptional gene regulation. Consequently, miRNAs may have significant influence on drug disposition and response. Therefore, research on miRNA pharmacoepigenetics shall not only improve mechanistic understanding of variations in pharmacotherapy but also provide novel insights into developing more effective therapeutic strategies.


Assuntos
Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Inativação Metabólica/genética , MicroRNAs/genética , Preparações Farmacêuticas/metabolismo , Processamento Pós-Transcricional do RNA/genética , Animais , Humanos , Fatores de Transcrição/genética
20.
J Biol Chem ; 289(6): 3105-13, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24318876

RESUMO

Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.


Assuntos
Citocromo P-450 CYP2D6/biossíntese , Fígado/enzimologia , Gravidez/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional/fisiologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Citocromo P-450 CYP2D6/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Feminino , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Gravidez/genética , Regiões Promotoras Genéticas/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Ativação Transcricional/efeitos dos fármacos , Tretinoína/farmacocinética , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA