Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Nat Prod ; 86(4): 850-859, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921254

RESUMO

Antibiotic resistance is one of the world's most urgent public health problems, and novel antibiotics to kill drug-resistant bacteria are needed. Natural product-derived small molecules have been the major source of new antibiotics. Here we describe a family of antibacterial metabolites isolated from a probiotic bacterium, Bacillus licheniformis. A cross-streaking assay followed by activity-guided isolation yielded a novel antibacterial metabolite, bacillimidazole G, which possesses a rare imidazolium ring in the structure, showing MIC values of 0.7-2.6 µg/mL against human pathogenic Gram-positive and Gram-negative bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and a lipopolysaccharide (LPS)-lacking Acinetobacter baumannii ΔlpxC. Bacillimidazole G also lowered MICs of colistin, a Gram-negative antibiotic, up to 8-fold against wild-type Escherichia coli MG1655 and A. baumannii. We propose a biosynthetic pathway to the characterized metabolites based on precursor-feeding studies, a chemical biological approach, biomimetic total synthesis, and a biosynthetic gene knockout method.


Assuntos
Bacillus licheniformis , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
2.
Nat Prod Rep ; 39(3): 512-559, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34608478

RESUMO

Covering: up to June 2021A wide variety of mushrooms have traditionally been recognized as edible fungi with high nutritional value and low calories, and abundantly produce structurally diverse and bioactive secondary metabolites. However, accidental ingestion of poisonous mushrooms can result in serious illnesses and even death. Chemically, mushroom poisoning is associated with secondary metabolites produced in poisonous mushrooms, causing specific toxicity. However, many poisonous mushrooms have not been fully investigated for their secondary metabolites, and the secondary metabolites of poisonous mushrooms have not been systematically summarized for details such as chemical composition and biosynthetic mechanisms. The isolation and identification of secondary metabolites from poisonous mushrooms have great research value since these compounds could be lethal toxins that contribute to the toxicity of mushrooms or could provide lead compounds with remarkable biological activities that can promote advances in other related disciplines, such as biochemistry and pharmacology. In this review, we summarize the structures and biological activities of secondary metabolites identified from poisonous mushrooms and provide an overview of the current information on these metabolites, focusing on their chemistry, bioactivity, and biosynthesis.


Assuntos
Agaricales , Intoxicação Alimentar por Cogumelos , Agaricales/química , Intoxicação Alimentar por Cogumelos/etiologia
3.
Chemistry ; 28(36): e202200612, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404539

RESUMO

In this study, we analyzed if Actinomadura sp. RB99 produces siderophores that that could be responsible for the antimicrobial activity observed in co-cultivation studies. Dereplication of high-resolution tandem mass spectrometry (HRMS/MS) and global natural product social molecular networking platform (GNPS) analysis of fungus-bacterium co-cultures resulted in the identification of five madurastatin derivatives (A1, A2, E1, F, and G1), of which were four new derivatives. Chemical structures were unambiguously confirmed by HR-ESI-MS, 1D and 2D NMR experiments, as well as MS/MS data and their absolute structures were elucidated based on Marfey's analysis, DP4+ probability calculation and total synthesis. Structure analysis revealed that madurastatin E1 (2) contained a rare 4-imidazolidinone cyclic moiety and madurastatin A1 (5) was characterized as a Ga3+ -complex. The function of madurastatins as siderophores was evaluated using the fungal pathogen Cryptococcus neoformans as model organism. Based on homology models, we identified the putative NRPS-based gene cluster region of the siderophores in Actinomadura sp. RB99.


Assuntos
Isópteros , Sideróforos , Actinomadura , Animais , Isópteros/microbiologia , Espectroscopia de Ressonância Magnética , Sideróforos/química , Espectrometria de Massas em Tandem
4.
Bioorg Med Chem Lett ; 36: 127828, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508466

RESUMO

Bioactivity-driven LC/MS-based phytochemical analysis of the root bark extract of Ulmus davidiana var. japonica led to the isolation of 10 compounds including a new coumarin glycoside derivative, ulmusakidian (1). The structure of the new compound was elucidated using extensive spectroscopic analyses via 1D and 2D NMR spectroscopic data interpretations, HR-ESIMS, and chemical transformation. The isolated compounds 1-10 were tested for their antifungal activity against human fungal pathogens Cryptococcus neoformans and Candida albicans. Compounds 9 and 10 showed antifungal activity against C. neoformans, with the lowest minimal inhibitory concentration (MIC) of 12.5-25.0 µg/mL, whereas none of the compounds showed antifungal activity against C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Ulmus/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Relação Estrutura-Atividade
5.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572374

RESUMO

In this study, the protective effects of white mulberry (Morus alba) fruits on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were investigated. The ethanol (EtOH) extract of white mulberry fruits and its derived fractions contained adequate total phenolic and flavonoid contents, with good in vitro antioxidant radical scavenging activity. The extract and fractions also markedly inhibited ROS generation and antioxidant activity. After treatment with the EtOH extract and its fractions, LPS stimulation-induced elevated nitric oxide (NO) production was restored, which was primarily mediated by downregulation of inducible NO synthase expression. A total of 20 chemical constituents including flavonoids, steroids, and phenolics were identified in the fractions using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight (QTOF) high-resolution mass spectrometry (HRMS). These findings provide experimental evidence of the protective effects of white mulberry fruit extract against oxidative stress and inflammatory responses, suggesting their nutraceutical and pharmaceutical potential as natural antioxidant and anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Frutas/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Animais , Flavonoides/farmacologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Células RAW 264.7
6.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799458

RESUMO

Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 µM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.


Assuntos
Resistência à Insulina/fisiologia , Florizina/farmacologia , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Células 3T3 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Camundongos , Palmitatos/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Bioorg Med Chem Lett ; 30(24): 127641, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127538

RESUMO

Phytochemical analysis of methanol extracts of Ginkgo biloba leaves resulted in the isolation of a novel diarylpentanoid, ginkgobilol (1) and a known diarylpentanoid analog (2). The structure of the new compound was elucidated by analyzing NMR spectroscopic data and HR-ESIMS, and the absolute configuration was determined using gauge-including atomic orbital NMR chemical shift calculations, followed by DP4+ analysis and specific rotation value. Diarylpentanoids comprise two aromatic rings linked by a five-carbon bridge; these are relatively unique examples in natural products. To the best of our knowledge, the present study is the first to report the presence of diarylpentanoids in G. biloba. Compound 2 increased alkaline phosphatase (ALP) production in C3H10T1/2, a murine mesenchymal stem cell line, in a dose-dependent manner. The promotion of osteogenic differentiation by the active compound 2 mediated by induction of transcriptional ALP and osteopontin (OPN) gene expression was confirmed using quantitative real time polymerase chain reaction, thus indicating its remarkable bone formation activity.


Assuntos
Ginkgo biloba/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteopontina/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
8.
J Nat Prod ; 83(7): 2261-2268, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32639158

RESUMO

Woodfordia uniflora is a flowering shrub unique to the Dhofar region of Oman and is used locally as a sedative and remedy for skin infection. However, no study to date has examined the pharmacological properties of this plant, and studies regarding phytochemicals present in W. uniflora are limited. Herein, phytochemical screening of the extract of W. uniflora was performed using LC/MS. Three new phenolic compounds, (±)-woodfordiamycin (1), woodfordic acid (2), and rhamnetin 3-O-(6″-galloyl)-ß-d-glucopyranoside (3), together with 16 known compounds 4-19, were isolated from the antifungal fraction of the extract. The structures of the new compounds were established by NMR and HR-MS data, and their absolute configurations were established using chemical transformations, including Mosher's method, comparison of experimental and calculated electronic circular dichroism data, and gauge-including atomic orbital NMR chemical shift calculations, followed by DP4+ analysis. The isolated compounds (1-19) were tested for antifungal activity against human fungal pathogens Cryptococcus neoformans and Candida albicans. Compounds (±)-1 and 8 showed antifungal activity against C. neoformans, with the lowest minimum inhibitory concentrations of 1.8-1.9 µM, which was ∼10-fold lower than that of the currently available antifungal drug fluconazole, while (±)-1, 8, and 19 showed antifungal activity against C. albicans.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Fenóis/isolamento & purificação , Fenóis/farmacologia , Woodfordia/química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Cromatografia Líquida/métodos , Cryptococcus neoformans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Omã , Fenóis/química , Análise Espectral/métodos
9.
J Nat Prod ; 83(3): 684-692, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32118424

RESUMO

Opuntia humifusa, known as the eastern prickly pear cactus and locally called "Cheonnyuncho" in Korea, is cultivated widely on Jeju Island, Korea. Phytochemical analysis of the methanolic extract of the cladodes of O. humifusa, for which previous research is relatively limited, was performed under the guidance of LC/MS-based analysis. As a result, one new megastigmane (1) and four new megastigmane glucosides (2-5) were isolated along with 18 known compounds (6-23). The structures of the new compounds were established by 1D and 2D NMR and HRESIMS, and their absolute configurations were established by chemical reactions, quantum chemical electronic circular dichroism calculations, and DP4+ analysis using the gauge-including atomic orbital NMR chemical shift calculations as well as the application of Snatzke's method. The isolated compounds (1-23) were tested for NO production inhibition in lipopolysaccharide (LPS)-induced RAW 264.7 cells to investigate their anti-inflammatory effects. Compounds 10 and 11 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner. The potential mechanistic pathway of 10 and 11 was also investigated using Western blotting, indicating that compounds 10 and 11 inhibit NO through iNOS expression.


Assuntos
Antioxidantes/farmacologia , Cicloexanonas/farmacologia , Glucosídeos/farmacologia , Norisoprenoides/farmacologia , Opuntia/química , Animais , Antioxidantes/isolamento & purificação , Cicloexanonas/isolamento & purificação , Glucosídeos/isolamento & purificação , Camundongos , Estrutura Molecular , Óxido Nítrico , Norisoprenoides/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais , Células RAW 264.7 , República da Coreia
10.
Bioorg Chem ; 105: 104397, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130348

RESUMO

The study of a Hawaiian volcanic soil-associated fungal strain Penicillium herquei FT729 led to the isolation of one unprecedented benzoquinone-chromanone, herqueilenone A (1) and two phenalenone derivatives (2 and 3). Their structures were determined through extensive analysis of NMR spectroscopic data and gauge-including atomic orbital (GIAO) NMR chemical shifts and ECD calculations. Herqueilenone A (1) contains a chroman-4-one core flanked by a tetrahydrofuran and a benzoquinone with an acetophenone moiety. Plausible pathways for the biosynthesis of 1-3 are proposed. Compounds 2 and 3 inhibited IDO1 activity with IC50 values of 14.38 and 13.69 µM, respectively. Compounds 2 and 3 also demonstrated a protective effect against acetaldehyde-induced damage in PC-12 cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Penicillium/química , Fenalenos/farmacologia , Acetaldeído/antagonistas & inibidores , Acetaldeído/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células PC12 , Fenalenos/química , Fenalenos/isolamento & purificação , Ratos , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379346

RESUMO

In bone homeostasis, bone loss due to excessive osteoclasts and inflammation or osteolysis in the bone formation process cause bone diseases such as osteoporosis. Suppressing the accompanying oxidative stress such as ROS in this process is an important treatment strategy for bone disease. Therefore, in this study, the effect of (2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-ß-d-apiofuranosyl-(1→6)-ß-d-glucopyranoside (BAG), an arylbutanoid glycoside isolated from Betula platyphylla var. japonica was investigated in RANKL-induced RAW264.7 cells and LPS-stimulated MC3E3-T1 cells. BAG inhibited the activity of TRAP, an important marker of osteoclast differentiation and F-actin ring formation, which has osteospecific structure. In addition, the protein and gene levels were suppressed of integrin ß3 and CCL4, which play an important role in the osteoclast-induced bone resorption and migration of osteoclasts, and inhibited the production of ROS and restored the expression of antioxidant enzymes such as SOD and CAT lost by RANKL. The inhibitory effect of BAG on osteoclast differentiation and ROS production appears to be due to the inhibition of MAPKs phosphorylation and NF-κß translocation, which play a major role in osteoclast differentiation. In addition, BAG inhibited ROS generated by LPS and effectively restores the mineralization of lost osteoblasts, thereby showing the effect of bone formation in the inflammatory situation accompanying bone loss by excessive osteoclasts, suggesting its potential as a new natural product-derived bone disease treatment.


Assuntos
Butanóis/farmacologia , Diferenciação Celular , Macrófagos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Butanóis/química , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Células RAW 264.7
12.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212980

RESUMO

In immunological responses, controlling excessive T cell activity is critical for immunological homeostasis maintenance. Diketoacetonylphenalenone, derived from Hawaiian volcanic soil-associated fungus Penicillium herquei FT729, possesses moderate anti-inflammatory activity in RAW 264.7 cells but its immunosuppressive effect on T cell activation is unknown. In the present study, diketoacetonylphenalenone (up to 40 µM) did not show cytotoxicity in T cells. Western blot analysis showed treatment with diketoacetonylphenalenone did not alter the expression of anti-apoptotic proteins. Pretreatment with diketoacetonylphenalenone suppressed the interleukin-2 production in activated T cells induced by T cell receptor-mediated stimulation and PMA/A23187. The CFSE-proliferation assay revealed the inhibitory effect of diketoacetonylphenalenone on the proliferation of T cells. The expression of surface molecules on activated T cells was also reduced. We discovered the suppression of the TAK1-IKKα-NF-κB pathway by pretreatment with diketoacetonylphenalenone abrogated mitogen-activated protein kinase (MAPK) signaling in activated T cells. These results suggest that diketoacetonylphenalenone effectively downregulates T cell activity via the MAPK pathway and provides insight into the therapeutic potential of immunosuppressive reagents.


Assuntos
Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Penicillium/química , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Microbiologia do Solo , Linfócitos T/imunologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Interleucina-2/biossíntese , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Linfócitos T/efeitos dos fármacos
13.
Molecules ; 25(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121016

RESUMO

Noni (Morinda citrifolia L.) fruit juice has been used in Polynesia as a traditional folk medicine and is very popular worldwide as a functional food supplement. In this study, compounds present in Hawaiian Noni fruit juice, with anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were identified. Five compounds were isolated using a bioassay-driven technique and phytochemical analysis of noni fruit juice: asperulosidic acid (1), rutin (2), nonioside A (3), (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-ß-d-glucopyranosyl-ß-d-glucopyranoside (4), and tricetin (5). The structures of these five compounds were determined via NMR spectroscopy and LC/MS. In an anti-inflammatory assay, compounds 1-5 inhibited the production of nitric oxide (NO), which is a proinflammatory mediator, in LPS-stimulated macrophages. Moreover, the mechanisms underlying the anti-inflammatory effects of compounds 1-5 were investigated. Parallel to the inhibition of NO production, treatment with compounds 1-5 downregulated the expression of IKKα/ß, I-κBα, and NF-κB p65 in LPS-stimulated macrophages. Furthermore, treatment with compounds 1-5 downregulated the expression of nitric oxide synthase and cyclooxygenase-2. Thus, these data demonstrated that compounds 1-5 present in noni fruit juice, exhibited potential anti-inflammatory activity; these active compounds may contribute preventively and therapeutically against inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Sucos de Frutas e Vegetais/análise , Morinda/química , Animais , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Fator de Transcrição RelA/metabolismo
14.
J Nat Prod ; 82(4): 765-773, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30776236

RESUMO

Withania somnifera, commonly known as "Indian ginseng" or "ashwagandha", is popular as a functional food because of its diverse purported therapeutic efficacies including invigorating, improvement of cognitive ability, and stress release activities. Chemical investigation of the MeOH extract of W. somnifera roots combined with LC/MS-based analysis resulted in the identification of six new withanolides, withasilolides A-F (1-6), as well as seven known compounds (7-13). The structures of the new compounds were established by application of spectroscopic methods, including 1D and 2D NMR, HRMS, and ECD measurements. The cytotoxicity of the isolated compounds was evaluated against four human cancer cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15). Compounds 1, 2, 4, 6, and withanone (11) each showed cytotoxicity for one or more of the four cancer cell lines used.


Assuntos
Antineoplásicos Fitogênicos/análise , Raízes de Plantas/química , Withania/química , Vitanolídeos/análise , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Vitanolídeos/química , Vitanolídeos/farmacologia
15.
Bioorg Chem ; 83: 135-144, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30352359

RESUMO

Pueraria lobata root (PLR), well known as Kudzu root, has recently become commercially available in Western dietary supplements for menopausal symptoms. The scientific basis for its action has been attributed to the action of phytoestrogens. This study aimed to investigate the estrogen-like activity of isoflavonoids isolated from P. lobata root and their safety with respect to their effect on breast cancer cell proliferation. In an E-screen assay, crude MeOH extract of PLR significantly increased the proliferation of MCF-7 cells in a concentration-dependent manner. Among the four fractions obtained by solvent fractionation of MeOH extract, the n-BuOH fraction had significant estrogen-like activities at all concentrations tested. Phytochemical analysis of the n-BuOH fraction led to the isolation of 10 isoflavones (1-10), among which genistein (10) had significant estrogen-like activities at all concentrations tested. These activities were significantly enhanced by treatment with genistein and 17ß-estradiol compared with 17ß-estradiol alone, and this effect was mediated by decreased expression of estrogen receptor (ER)α and phospho-ERα in MCF-7 cells. In a cell cytotoxicity assay, genistein (10) exhibited significant cytotoxicity in both ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. This cytotoxicity was characterized by the induction of apoptotic cells stained with annexin V conjugated with Alexa Fluor 488 and involved activation of mitochondria-independent and -dependent apoptosis pathways in MCF-7 cells. Our results demonstrated that genistein (10) has estrogen-like effects dependent on ER pathway activation and anti-proliferative effects mediated by the apoptosis pathway rather than the ER pathway in MCF-7 breast cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Isoflavonas/farmacologia , Raízes de Plantas/química , Pueraria/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptor alfa de Estrogênio/metabolismo , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
16.
Bioorg Chem ; 91: 103145, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31357073

RESUMO

The root bark of Ulmus davidiana var. japonica (Ulmaceae), commonly known as yugeunpi, has been used as a traditional Korean medicine for the treatment of gastroenteric and inflammatory disorders. As part of continuing projects to discover bioactive natural products from traditional medicinal plants with pharmacological potential, phytochemical investigation of the root bark of this plant was carried out. This led to the successful isolation of a new chromane derivative (1) and 22 known compounds: catechin derivatives (2-5), megastigmane glycoside (6), dihydrochalcone glycosides (7 and 8), flavanone glycosides (9 and 10), coumarins (11 and 12), lignan derivatives (13-17), and phenolic compounds (18-23). The structure of the new compound (1) was determined with 1D and 2D NMR spectroscopy and HR-ESIMS, and its absolute configurations were achieved by chemical reactions and the gauge-including atomic orbital (GIAO) NMR chemical shifts calculations. All the isolated compounds were evaluated for their potential biological activities including neuro-protective, anti-neuroinflammatory, and anti-Helicobacter pylori activities. Among the isolates, compounds 1, 8, and 20 displayed stronger potency by causing a greater increase in the production and the activity of nerve growth factor (NGF) in C6 glioma cells (147.04 ±â€¯4.87, 206.27 ±â€¯6.70, and 143.70 ±â€¯0.88%, respectively), whereas compounds 11, 14, and 19 inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated murine microglial cells (IC50 of 18.72, 12.31, and, 21.40 µM, respectively). In addition, compounds 1, 11, 18, and 20 showed anti-H. pylori activity with MIC values of 25 or 50 µM against two strains of H. pylori 51 and 43504. These findings provide scientific evidence that supports the traditional usage of U. davidiana var. japonica root bark in the treatment of gastroenteric and inflammatory disorders.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Fármacos Neuroprotetores/farmacologia , Casca de Planta/química , Extratos Vegetais/farmacologia , Ulmus/química , Animais , Células Cultivadas , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Fator de Crescimento Neural/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/química , Ratos
17.
Bioorg Med Chem Lett ; 28(6): 1084-1089, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29459209

RESUMO

Pinus koraiensis pinecones are considered an undesired waste by-product of the processing of seeds. However, recent studies of the potential anti-tumor effects of the pinecones have led to increasing interest in their chemical constituents. The present study examined the potential antiangiogenic effects of the constituents of pinecones and further characterized their underlying mechanisms of action. Chemical investigation of a water extract of P. koraiensis pinecones led to the isolation and identification of the eight main components including five diterpenoids (1-5), two monoterpenes (6,7) and a phenolic acid (8). The structure of the compounds was determined by spectroscopic analysis of NMR spectra and LC/MS analysis. Of the isolated compounds, 7α,15-dihydroxydehydroabietic acid (5) significantly inhibited the promotion of angiogenesis in human umbilical vein endothelial cells (HUVECs). Compound 5 inhibited angiogenesis through downregulation of the VEGF, p-Akt and p-ERK signaling pathways. These results provide experimental evidence of a novel biological activity of 7α,15-dihydroxydehydroabietic acid (5) as a potential antiangiogenic substance. This study also suggests that compound 5 could potentially be a useful adjuvant therapeutic substance for cancer prevention and treatment.


Assuntos
Abietanos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Pinus/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Abietanos/síntese química , Abietanos/química , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Estrutura Molecular , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Bioorg Chem ; 76: 28-36, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29125970

RESUMO

The fruit of the white mulberry tree (Morus alba L.) is a multiple fruit with a sweet flavor commonly consumed around the world. Chemical investigation of the fruits led to the isolation of two indole acetic acid derivatives (1 -2) including a new compound, which turned out to be an isolation artifact, 3S-(ß-D-glucopyranosyloxy)-2,3-dihydro-2-oxo-1H-indole-3-acetic acid butyl ester (1), along with five known compounds (3 -7). Compounds 2 and 7 were newly identified from mulberry fruit. The new isolation artifact (1) exhibited cytotoxic effect on human cervical cancer Hela cells in a dose-dependent manner. Compound 1 activated caspase-8, caspase-9, and caspase-3, followed by cleavage of PARP, a substrate of caspase-3, in a dose-dependent manner. Simultaneous alterations in protein expression of mitochondrial factors Bax, BID and Bcl-2 were also observed. A comparison between compounds 1 and 2 led to a structure-activity relationship analysis of the cytotoxic effect. These results suggest that compound 1 could be beneficial in human cervical cancer treatment, and provide a theoretical basis for further application of compound 1.


Assuntos
Antineoplásicos/farmacologia , Glucosídeos/farmacologia , Ácidos Indolacéticos/farmacologia , Morus/química , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Feminino , Frutas/química , Glucosídeos/química , Glucosídeos/isolamento & purificação , Células HeLa , Humanos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/isolamento & purificação , Estereoisomerismo , Relação Estrutura-Atividade
19.
Chem Biodivers ; 15(11): e1800333, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30207632

RESUMO

LC/MS-based phytochemical analysis of an EtOH extract of the roots of rice (Oryza sativa; Gramineae), which takes a crucial role in the stable crop population in Asia, resulted in the isolation of a new lignan, oryzativol C (1), as a minor component. The chemical structure of compound 1 was unambiguously confirmed using spectroscopic evidence (including 1D- and 2D-NMR data), HR-ESI-MS, and CD data analysis. Considering the traditional medicinal efficacy of O. sativa and its importance as a food crop, compound 1 was evaluated for effects on breast cancer cell lines (MDA-MB-231) and on glucose-stimulated insulin secretion in an INS-1 pancreatic ß-cell line. Compound 1 showed mild cytotoxicity toward the MDA-MB-231. Furthermore, compound 1 stimulated insulin secretion in INS-1 pancreatic ß-cells without inducing cytotoxicity. These results indicate that compound 1 is an active ingredient of O. sativa that offers health benefits including inhibition of breast cancer cell proliferation and hyperglycemia control.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Lignanas/farmacologia , Oryza/química , Raízes de Plantas/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Lignanas/química , Lignanas/isolamento & purificação , Conformação Molecular , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642519

RESUMO

Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae), is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1-5. The compounds were identified as butyl pyroglutamate (1), quercetin 3-O-ß-d-glucoside (2), kaempferol 3-O-ß-d-rutinoside (3), rutin (4), and 2-phenylethyl d-rutinoside (5) by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR) data with those in published literature, and liquid chromatography-mass spectrometry analysis. The isolated compounds 1-5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.


Assuntos
Cisplatino/efeitos adversos , Frutas/química , Rim/citologia , Morus/química , Compostos Fitoquímicos/farmacologia , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Células LLC-PK1 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA