Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(31): 315710, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32272461

RESUMO

An atomically thin MoSe2 layer has been synthesized on mica using molecular beam epitaxy (MBE). The polymorphous of the MoSe2 layer depends on the coverage and the growth temperature. At low coverages and low growth temperature, 1T-MoSe2 forms in addition to a comparable quantity of 2H-MoSe2. The metastable 1T-MoSe2 transfers gradually to the stable 2H-MoSe2 before the completion of the first monolayer. The current result sheds some light on the complexity of the nucleation and growth of transition metal dichalcogenide (TMDC) monolayers and implies a possible route for a phase selective synthesis using MBE.

2.
Nano Lett ; 18(8): 5070-5077, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29965777

RESUMO

Prediction from the dual-phase nature of superionic conductors-both solid and liquid-like-is that mobile ions in the material may experience reversible extraction-reinsertion by an external electric field. However, this type of pseudoelectroelasticity has not been confirmed in situ, and no details on the microscopic mechanism are known. Here, we in situ monitor the pseudoelectroelasticity of monocrystalline Cu2S nanowires (NWs) using transmission electron microscopy (TEM). Specifically, we reveal the atomic scale details including phase transformation, migration and redox reactions of Cu+ ions, nucleation, growth, as well as spontaneous shrinking of Cu protrusion. Caterpillar-diffusion-dominated deformation is confirmed by the high-resolution transmission electron microscopy (HRTEM) observation and  ab initio calculation, which can be driven by either an external electric field or chemical potential difference. The observed spring-like behavior was creatively adopted for electric nanoactuators. Our findings are crucial to elucidate the mechanism of pseudoelectroelasticity and could potentially stimulate in-depth research into electrochemical and nanoelectromechanical systems.

3.
Environ Monit Assess ; 188(2): 88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769701

RESUMO

Global climate change affects the availability of soil nutrients, thereby influencing crop productivity. This research was conducted to investigate the effects of elevated CO2, elevated temperature, and the interaction of the elevated CO2 and temperature on the soil available phosphorus (P) of a paddy-wheat rotation in the Taihu Lake region, China. Winter wheat (Triticum aestivum L.) was cultivated during the study period from 2011 to 2014 at two CO2 levels (350 µL•L(-1) ambient and 500 µL•L(-1) elevated by 150 µL•L(-1)) and two temperatures (ambient and 2 °C above the ambient). Soil available P content increased at the first season and decreased at the last season during the three wheat growing seasons. Soil available P content showed seasonal variation, whereas dynamic changes were not significant within each growing season. Soil available P content had no obvious trends under different treatments. But for the elevated temperature, CO2, and their combination treatments, soil available P content decreased in a long time period. During the period of wheat ripening stage, significant positive correlations were found between soil available P content and saturated hydraulic conductivity (Ks) and organic matter, but significant negative correlations with soil clay content and pH value; the correlation coefficients were 0.9400 (p < 0.01), 0.9942 (p < 0.01), -0.9383 (p < 0.01), and -0.6403 (p < 0.05), respectively. Therefore, Ks, organic matter, soil clay, and pH were the major impact factors on soil available P content. These results can provide a basis for predicting the trend of soil available P variation, as well as guidance for managing the soil nutrients and best fertilization practices in the future climate change scenario.


Assuntos
Agricultura , Mudança Climática , Monitoramento Ambiental , Fósforo/análise , Solo/química , China , Clima , Lagos , Estações do Ano , Temperatura , Triticum
4.
Nat Commun ; 12(1): 4812, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376694

RESUMO

Atomic diffusion has been recognized as a particularly powerful tool in the synthesis of heterostructures. However, controlled atomic diffusion is very difficult to achieve in the fabrication of individual nanostructures. Here, an electrically driven in situ solid-solid diffusion reaction inside a TEM is reported for the controlled fabrication of two different hetero-nanostructures in the Ag-Te system. Remarkably, the morphology and structure of the as-formed heterostructures are strongly dependent on the path of atomic diffusion. Our experiments revealed that the surface diffusion of Te atoms to Ag nanowires leads to a core-shell structure, while the bulk diffusion of Ag atoms give rise to a Ag2Te-Te segmented heterostructure. Heat released by Joule heating caused the surface diffusion process to be replaced by bulk diffusion and thereby determined the structure of the final product. Our experimental results provide an insight into solid-state diffusion reactions under an electric field and also propose a new process for the fabrication of complex nanostructures.

5.
J Phys Chem Lett ; 10(8): 1973-1980, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30947503

RESUMO

Bimetallic Janus nanostructures (JNs) have been revealed to be valuable materials because they have unique intermetallic interfaces that enable their potential use in a range of applications. However, with the increasing miniaturization of electronic devices, particle sizes influence the structure and orientation of these heterointerfaces, which plays a significant role in their application. Our in situ annealing experiments with high-resolution transmission electron microscopy have shown that for particle sizes in the sub-10 nm range, CuAg JNs preferentially show a Cu(100)/Ag(100) interface, differing from the larger CuAg JNs, where the Cu(111)/Ag(111) interface is favored. We discuss a feasible atomic motion mechanism to explain the effect of particle size on the formation of different heterointerfaces. Our results reveal the presence of a novel sub-10 nm heterostructure with a unique Cu(100)/Ag(100) interface and also provide crucial insights into understanding the role of particle size in interfacial evolution during thermal annealing of heterostructures.

6.
Research (Wash D C) ; 2019: 3289247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31912032

RESUMO

The growth of crystalline Si (c-Si) via direct electron beam writing shows promise for fabricating Si nanomaterials due to its ultrahigh resolution. However, to increase the writing speed is a major obstacle, due to the lack of systematic experimental explorations of the growth process and mechanisms. This paper reports a systematic experimental investigation of the beam-induced formation of c-Si nanoparticles (NPs) from amorphous SiO2 under a range of doses and temperatures by in situ transmission electron microscopy at the atomic scale. A three-orders-of-magnitude writing speed-up is identified under 80 keV irradiation at 600°C compared with 300 keV irradiation at room temperature. Detailed analysis reveals that the self-organization of c-Si NPs is driven by reduction of c-Si effective free energy under electron irradiation. This study provides new insights into the formation mechanisms of c-Si NPs during direct electron beam writing and suggests methods to improve the writing speed.

7.
Adv Sci (Weinh) ; 5(5): 1700213, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876198

RESUMO

The manipulation and tailoring of the structure and properties of semiconductor nanocrystals (NCs) is significant particularly for the design and fabrication of future nanodevices. Here, a novel domain-confined growth strategy is reported for controllable fabrication of individual monocrystal hollow NCs (h-NCs) in situ inside a transmission electron microscope, which enables the atomic scale monitoring of the entire reaction. During the process, the preformed carbon shells serve as nanoreaction cells for the formation of CdSeS h-NCs. Electron beam (e-beam) irradiation is demonstrated to be the key activation factor for the solid-to-hollow shape transformation. The formation of CdSeS hollow NCs is also found to be sensitive to the volume ratio of the CdSe/CdS NCs to the carbon shell and only those CdSe/CdS NCs with a volume ratio in the range 0.2-0.8 are successfully converted into hollow NCs. The method paves the way to potentially use an e-beam for the in situ tailoring of individual semiconductor NCs targeted toward future nanodevice applications.

8.
Adv Sci (Weinh) ; 5(6): 1800096, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938188

RESUMO

Higher memory density and faster computational performance of resistive switching cells require reliable array-accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni-electrode/HfO x /SiO2 asymmetric self-rectifying resistive switching device is fabricated. The interfacial defects in the HfO x /SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation-dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni-rich conductive filament modifies the resistive switching effect. This study has important implications at the array-level performance of high density resistive switching memories.

9.
Nat Commun ; 8: 14889, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401911

RESUMO

Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. At present, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu+ migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and final phases, and the standard electrode potentials of the active electrodes. Our experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA