Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 19(1): 269, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493305

RESUMO

BACKGROUND: Many patients suffer from implant loosening after the implantation of titanium alloy caused by immune response to the foreign bodies and this could inhibit the following osteogenesis, which could possibly give rise to aseptic loosening and poor osteointegration while there is currently no appropriate solution in clinical practice. Exosome (Exo) carrying miRNA has been proven to be a suitable nanocarrier for solving this problem. In this study, we explored whether exosomes overexpressing miR-181b (Exo-181b) could exert beneficial effect on promoting M2 macrophage polarization, thus inhibiting inflammation as well as promoting osteogenesis and elaborated the underlying mechanism in vitro. Furthermore, we aimed to find whether Exo-181b could enhance osteointegration. RESULTS: In vitro, we firstly verified that Exo-181b significantly enhanced M2 polarization and inhibited inflammation by suppressing PRKCD and activating p-AKT. Then, in vivo, we verified that Exo-181b enhanced M2 polarization, reduced the inflammatory response and enhanced osteointegration. Also, we verified that the enhanced M2 polarization could indirectly promote the migration and osteogenic differentiation by secreting VEGF and BMP-2 in vitro. CONCLUSIONS: Exo-181b could suppress inflammatory response by promoting M2 polarization via activating PRKCD/AKT signaling pathway, which further promoting osteogenesis in vitro and promote osteointegration in vivo.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Nanotecnologia , Animais , Doenças Ósseas/tratamento farmacológico , Diferenciação Celular , Hidrogéis/química , Macrófagos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/uso terapêutico , Osteogênese , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Titânio/química
2.
J Cell Mol Med ; 24(10): 5758-5771, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32253813

RESUMO

Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High-fat diet-induced obese mice represented pre-diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark-type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV-dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre-diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II-dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I-dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early-stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Glucose/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Animais , Morte Celular , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Comportamento Alimentar , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo
3.
Cell Biochem Funct ; 38(7): 965-975, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32196704

RESUMO

To explore the effects of miR-21-3p on diabetic atherosclerosis. Using enzyme-linked immunosorbent assay (ELISA), we also detected the levels of soluble receptor for advanced glycation endproducts RAGE (sRAGE) in the cellular supernatant of vascular endothelial cells after transfecting them with adenovirus vector having miR-21-3p mimic or inhibitor. We found decrease in the expression levels of miR-21-3p in vascular endothelial cells (VECs) induced by high-concentration glucose. We also observed that the introduction of miR-21-3p mimic significantly increased the expression of ADAM10 in the VECs. Similarly, significantly higher levels of sRAGE were found in the cultured supernatant after administration of miR-21-3p mimic in human vein endothelial cells. The production of reactive oxygen species and expression of inflammatory cytokines in VECs induced by LPS and high-concentration glucose were significantly decreased after administration of miR-21-3p. in vivo studies revealed that intravenous injection of miR-21-3p at regular intervals would reduce the area of atherosclerotic lesion and elevate the serum levels of sRAGE in atherosclerotic diabetic mice. miR-21-3p may be beneficial in diabetic atherosclerosis by promoting the cleaved form of sRAGE and inhibition of RAGE/NADPH oxidase signalling depending on the increased expression of ADAM10. SIGNIFICANCE OF THE STUDY: We identified a novel microRNA, miR-21-3p, which is characteristically at elevated levels in serum derived from diabetic patients and responsible for target degradation of ADAM10 mRNA. Further, we show that miR-21-3p aggravates the atherosclerotic lesion via dysfunction of the ectodomain shedding of molecular binding RAGE in the diabetic atherosclerotic mice.


Assuntos
Aterosclerose/patologia , Produtos Finais de Glicação Avançada/metabolismo , MicroRNAs/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animais , Antagomirs/metabolismo , Aterosclerose/etiologia , Linhagem Celular , Movimento Celular , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Glucose/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos
4.
Int J Biol Sci ; 17(7): 1693-1707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994854

RESUMO

This study is to investigate the relationship between berberine (BBR) and mitochondrial complex I in lipid metabolism. BBR reversed high-fat diet-induced obesity, hepatic steatosis, hyperlipidemia and insulin resistance in mice. Fatty acid consumption, ß-oxidation and lipogenesis were attenuated in liver after BBR treatment which may be through reduction in SCD1, FABP1, CD36 and CPT1A. BBR promoted fecal lipid excretion, which may result from the reduction in intestinal CD36 and SCD1. Moreover, BBR inhibited mitochondrial complex I-dependent oxygen consumption and ATP synthesis of liver and gut, but no impact on activities of complex II, III and IV. BBR ameliorated mitochondrial swelling, facilitated mitochondrial fusion, and reduced mtDNA and citrate synthase activity. BBR decreased the abundance and diversity of gut microbiome. However, no change in metabolism of recipient mice was observed after fecal microbiota transplantation from BBR treated mice. In primary hepatocytes, BBR and AMPK activator A769662 normalized oleic acid-induced lipid deposition. Although both the agents activated AMPK, BBR decreased oxygen consumption whereas A769662 increased it. Collectively, these findings indicated that BBR repressed complex I in gut and liver and consequently inhibited lipid metabolism which led to alleviation of obesity and fatty liver. This process was independent of intestinal bacteria.


Assuntos
Berberina/farmacologia , Complexo I de Transporte de Elétrons/deficiência , Intestinos/metabolismo , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/ultraestrutura , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos AKR , Microscopia Eletrônica de Transmissão , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Oxirredução
5.
Bioact Mater ; 6(9): 2841-2853, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33718666

RESUMO

RATIONALE: Chronic wounds associated with diabetes exact a heavy burden on individuals and society and do not have a specific treatment. Exosome therapy is an extension of stem cell therapy, and RNA interference (RNAi)-based therapy is a type of advanced precision therapy. Based on the discovery of chronic wound-related genes in diabetes, we combined exosome therapy and RNAi therapy through an engineering approach for the treatment of diabetic chronic wounds. METHODS: We combined exosome therapy and RNAi therapy to establish a precision therapy for diabetes-associated wounds via an engineered exosome approach. RESULTS: First, chronic diabetic wounds express low levels of miR-31-5p compared with nondiabetic wounds, and an miR-31-5p mimic was shown to be effective in promoting the proliferation and migration of three wound-related cell types in vitro. Second, bioinformatics analysis, luciferase reporter assays and western blotting suggested that miR-31-5p promoted angiogenesis, fibrogenesis and reepithelization by inhibiting factor-inhibiting HIF-1 (HIF1AN, also named FIH) and epithelial membrane protein-1 (EMP-1). Third, engineered miR-31 exosomes were generated as a miR-31-5p RNAi therapeutic agent. In vivo, the engineered miR-31 exosomes promoted diabetic wound healing by enhancing angiogenesis, fibrogenesis and reepithelization. CONCLUSION: Engineered miR-31 exosomes are an ideal disease pathophysiology-initiated RNAi therapeutic agent for diabetic wounds.

6.
Stem Cell Res Ther ; 11(1): 350, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787917

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC)-derived exosomes emerge as promising candidates for treating delayed wound healing in diabetes due to the promotion of angiogenesis. Preconditioned MSC with chemical or biological factors could possibly enhance the biological activities of MSC-derived exosomes. The purpose of this research focused on whether exosomes derived from the bone marrow MSC (BMSC) pretreated with atorvastatin (ATV), could exhibit better pro-angiogenic ability in diabetic wound healing or not and its underlying molecular mechanism. METHODS: We isolated exosomes from non-pretreated BMSC (Exos) and ATV pretreated BMSC (ATV-Exos) and evaluated their characterization by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blotting. In vivo, we made full-thickness skin defects in streptozotocin (STZ)-induced diabetic rats and the defects received multiple-point injection with PBS, Exos, or ATV-Exos. Two weeks later, histological analysis was conducted to evaluate the impact of different treatments on wound healing and the neovascularization was measured by micro-CT. In vitro, cell proliferation, migration, tube formation, and vascular endothelial growth factor (VEGF) secretion were measured in human umbilical vein endothelial cells (HUVEC). The role of miRNAs and AKT/eNOS signaling pathway in the promoted angiogenesis of ATV-Exos were assessed with their inhibitors. RESULTS: No significant difference in morphology, structure, and concentration was observed between ATV-Exos and Exos. In STZ-induced diabetic rats, ATV-Exos exhibited excellent abilities in facilitating the wound regeneration by promoting the formation of blood vessels compared with Exos without influencing liver and kidney function. Meanwhile, ATV-Exos promoted the proliferation, migration, tube formation, and VEGF level of endothelial cells in vitro. And AKT/eNOS pathway was activated by ATV-Exos and the pro-angiogenic effects of ATV-Exo were attenuated after the pathway being blocked. MiR-221-3p was upregulated by ATV-Exos stimulation, and miR-221-3p inhibitor suppressed the pro-angiogenesis effect of ATV-Exos. CONCLUSIONS: Exosomes originated from ATV-pretreated MSCs might serve as a potential strategy for the treatment of diabetic skin defects through enhancing the biological function of endothelial cells via AKT/eNOS pathway by upregulating the miR-221-3p.


Assuntos
Diabetes Mellitus Experimental , Exossomos , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-akt , Cicatrização , Animais , Atorvastatina/farmacologia , Proliferação de Células , Diabetes Mellitus Experimental/terapia , MicroRNAs , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Fator A de Crescimento do Endotélio Vascular/genética
7.
Stem Cell Res Ther ; 11(1): 259, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600435

RESUMO

BACKGROUND: After surgery, wound recovery in diabetic patients may be disrupted due to delayed inflammation, which can lead to undesired consequences, and there is currently a lack of effective measures to address this issue. Mesenchymal stem cell (MSC)-derived exosomes (Exo) have been proven to be appropriate candidates for diabetic wound healing through the anti-inflammatory effects. In this study, we investigated whether melatonin (MT)-pretreated MSCs-derived exosomes (MT-Exo) could exert superior effects on diabetic wound healing, and we attempted to elucidate the underlying mechanism. METHODS: For the evaluation of the anti-inflammatory effect of MT-Exo, in vitro and in vivo studies were performed. For in vitro research, we detected the secreted levels of inflammation-related factors, such as IL-1ß, TNF-α and IL-10 via ELISA and the relative gene expression of the IL-1ß, TNF-α, IL-10, Arg-1 and iNOS via qRT-PCR and investigated the expression of PTEN, AKT and p-AKT by Western blotting. For in vivo study, we established air pouch model and streptozotocin (STZ)-treated diabetic wound model, and evaluated the effect of MT-Exo by flow cytometry, optical imaging, H&E staining, Masson trichrome staining, immunohistochemical staining, immunofluorescence, and qRT-PCR (α-SMA, collagen I and III). RESULTS: MT-Exo significantly suppressed the pro-inflammatory factors IL-1ß and TNF-α and reduced the relative gene expression of IL-1ß, TNF-α and iNOS, while promoting the anti-inflammatory factor IL-10 along with increasing the relative expression of IL-10 and Arg-1, compared with that of the PBS, LPS and the Exo groups in vitro. This effect was mediated by the increased ratio of M2 polarization to M1 polarization through upregulating the expression of PTEN and inhibiting the phosphorylation of AKT. Similarly, MT-Exo significantly promoted the healing of diabetic wounds by inhibiting inflammation, thereby further facilitating angiogenesis and collagen synthesis in vivo. CONCLUSIONS: MT-Exo could promote diabetic wound healing by suppressing the inflammatory response, which was achieved by increasing the ratio of M2 polarization to M1 polarization through activating the PTEN/AKT signalling pathway, and the pretreatment of MT was proved to be a promising method for treating diabetic wound healing.


Assuntos
Diabetes Mellitus , Exossomos , Melatonina , Células-Tronco Mesenquimais , Humanos , Macrófagos , Melatonina/farmacologia , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Cicatrização
8.
Biomater Sci ; 8(15): 4225-4238, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32578587

RESUMO

Diabetic wounds remain a serious clinical challenge whereas current therapies have limited effects on reducing the high disability and morbidity. Impaired vascularization is closely associated with delayed healing of diabetic wounds and liraglutide (Lira), a GLP-1R receptor agonist, has been reported to promote the angiogenic ability of endothelial cells. However, its application is hindered owing to the unsustainable drug concentration. In this study, we prepared a poly (lactic-co-glycolic acid)/gelatin (PLGA/Gel) nanofibrous mat scaffold to sustain the release of Lira for skin tissue engineering through 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy sulfosuccinimide (EDC/NHS), a green cross-linking-graft integration method. The incorporation of Lira into PLGA/Gel increased the pore size, hydrophilicity, elasticity and degradation properties of nanofibrous mats, which were advantageous to wound healing. In addition, the effects on diabetic wound healing, vascularization and its underlying mechanism were evaluated. The results revealed that PLGA/Gel/Lira remarkably improved the healing efficiency of diabetic dermal wounds characterized by shortened wound closure time, increased blood vessel density, and elevated collagen deposition and alignment. In vitro, Lira reversed the inhibitory effects on proliferation, migration, tube differentiation, and VEGF secretion of endothelial cells induced by high glucose (HG). As for the underlying mechanism, Lira specifically decreased the level of miR-29b-3p, targeting the AKT/GSK-3ß/ß-catenin pathway to regulate the biological function of endothelial cells. In conclusion, for the first time this study combined PLGA/Gel with Lira to take advantage of their synergistic effects to promote vascularization, a promising strategy to accelerate diabetic wound repair.


Assuntos
Diabetes Mellitus , MicroRNAs , Nanofibras , Células Endoteliais , Gelatina , Glicogênio Sintase Quinase 3 beta , Humanos , Liraglutida , Alicerces Teciduais , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA