Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Stroke ; 55(7): 1904-1913, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38913800

RESUMO

BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPRmt may be a potential therapeutic target for ischemic stroke. METHODS: We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively. Oligomycin and meclizine were used to trigger the UPRmt. We used 2,3,5-triphenyltetrazolium chloride staining, behavioral tests, and Nissl staining to evaluate cerebral injury in vivo. The Cell Counting Kit-8 assay and the Calcein AM Assay Kit were conducted to test cerebral injury in vitro. RESULTS: Inducing UPRmt with oligomycin protected neuronal cultures against oxygen-glucose deprivation. UPRmt could also be triggered with meclizine, and this Food and Drug Administration-approved drug also protected neurons against oxygen-glucose deprivation. Blocking UPRmt with siRNA against activating transcription factor 5 eliminated the neuroprotective effects of meclizine. In a mouse model of focal cerebral ischemia, pretreatment with meclizine was able to induce UPRmt in vivo, which reduced infarction and improved neurological outcomes. CONCLUSIONS: These findings suggest that the UPRmt is important in maintaining the survival of neurons facing ischemic/hypoxic stress. The UPRmt mechanism may provide a new therapeutic avenue for ischemic stroke.


Assuntos
Isquemia Encefálica , Glucose , Mitocôndrias , Neurônios , Resposta a Proteínas não Dobradas , Animais , Masculino , Camundongos , Isquemia Encefálica/metabolismo , Células Cultivadas , Glucose/deficiência , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
2.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38738428

RESUMO

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Junções Íntimas , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/genética , Morte Celular , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Junções Íntimas/metabolismo
3.
Med Sci Monit ; 27: e928676, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621218

RESUMO

BACKGROUND Different responses to identical trauma may be related to the genetic background of individuals, but the molecular mechanism is unclear. In this study we investigated the heterogeneity of trauma in mice and the potential biological explanations for the differences. MATERIAL AND METHODS Compared with other organs, the pathological response of the lung after injury is the earliest and most serious. We used C57BL/6 and BALB/C mice to explore the genetic background of different responses to trauma in the lung. We measured mortality rate, pulmonary microvascular permeability, and Cxcl15 gene expression in BALB/C and C57BL/6 mice before and after blast-wave injury. Microvascular permeability was measured using a fluorescent tracer, and Cxcl15 gene expression level and expression distribution were measured using fluorogenic probe quantitative polymerase chain reaction and northern blot. RESULTS C57BL/6 mice showed lower mortality rates and pulmonary microvascular permeability than BALB/C mice after blast-wave injury; there was no significant difference in the permeability before blast-wave injury. The Cxcl15 gene was expressed specifically in the lung tissue of mice. The level of Cxcl15 expression in BALB/C mice was higher than in C57BL/6 mice before and after injury, and the variation trend of Cxcl15 expression level after injury was significantly different between BALB/C and C57BL/6 mice. CONCLUSIONS Our results indicated that BALB/C and C57BL/6 mice had significant heterogeneity in posttraumatic response in terms of mortality and degree of lung damage. The differences in genetic factors such as Cxcl15 may have played a role in this heterogeneity.


Assuntos
Lesão Pulmonar/fisiopatologia , Pulmão/patologia , Ferimentos e Lesões/genética , Animais , Traumatismos por Explosões/genética , Traumatismos por Explosões/fisiopatologia , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Expressão Gênica/genética , Pulmão/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012810

RESUMO

Recombinant fibroblast growth factor 21 (rFGF21) has been shown to be potently beneficial for improving long-term neurological outcomes in type 2 diabetes mellitus (T2DM) stroke mice. Here, we tested the hypothesis that rFGF21 protects against poststroke blood-brain barrier (BBB) damage in T2DM mice via peroxisome proliferator-activated receptor gamma (PPARγ) activation in cerebral microvascular endothelium. We used the distal middle cerebral occlusion (dMCAO) model in T2DM mice as well as cultured human brain microvascular endothelial cells (HBMECs) subjected to hyperglycemic and inflammatory injury in the current study. We detected a significant reduction in PPARγ DNA-binding activity in the brain tissue and mRNA levels of BBB junctional proteins and PPARγ-targeting gene CD36 and FABP4 in cerebral microvasculature at 24 h after stroke. Ischemic stroke induced a massive BBB leakage two days after stroke in T2DM mice compared to in their lean controls. Importantly, all abnormal changes were significantly prevented by rFGF21 administration initiated at 6 h after stroke. Our in vitro experimental results also demonstrated that rFGF21 protects against hyperglycemia plus interleukin (IL)-1ß-induced transendothelial permeability through upregulation of junction protein expression in an FGFR1 activation and PPARγ activity elevation-dependent manner. Our data suggested that rFGF21 has strong protective effects on acute BBB leakage after diabetic stroke, which is partially mediated by increasing PPARγ DNA-binding activity and mRNA expression of BBB junctional complex proteins. Together with our previous investigations, rFGF21 might be a promising candidate for treating diabetic stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Crescimento de Fibroblastos/administração & dosagem , PPAR gama/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Cultura Primária de Células , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
5.
J Neurochem ; 149(2): 298-310, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30347434

RESUMO

Histone deacetylase 3 (HDAC3), a member of class I HDAC, regulates a wide variety of normal and abnormal physiological functions. Recent experimental studies suggested that inhibition of HDAC3 may increase acetylation of certain key signaling regulating proteins such as peroxisome proliferator-activated receptor γ (PPARγ), which plays a crucial role in modulating cerebrovascular function and integrity. However, the role of HDAC3 inhibition in cerebrovascular endothelium function under pathological condition has not been fully investigated. In this study, we tested the hypothesis that inhibition of HDAC3 by RGFP966, a highly selective HDAC3 inhibitor, promotes PPARγ activation by enhancing its protein acetylation, resulting in protection of oxygen glucose deprivation and reoxygenation (OGD/R)-induced increase of transendothelial cell permeability. In cultured primary human brain microvascular endothelial cells, our experimental results show that OGD/R increases transendothelial cell permeability and down-regulates junction protein expression. While we also detected HDAC3 activity increase and PPARγ activity decline after OGD/R. However, treatment with RGFP966 significantly attenuated the OGD/R-induced increase of transendothelial cell permeability and down-regulation of tight junction protein Claudin-5. These effects were observed to be dependent on HDAC3 activity inhibition-mediated PPARγ protein acetylation/activation. Lastly, HDAC3 small interfering RNA mimics the protective effects of RGFP966 on human brain microvascular endothelial cells. Taken together, our data indicate that HDAC3 inhibition might comprise a new therapeutic target for reducing blood-brain barrier integrity disruption and vascular dysfunctions in neurological disorders.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Histona Desacetilases/metabolismo , PPAR gama/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Glucose/deficiência , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hipóxia/metabolismo
6.
J Neuroinflammation ; 16(1): 103, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101061

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic dysfunction characterized by progressive insulin resistance and hyperglycaemia. Increased blood-brain barrier (BBB) permeability is a critical neurovascular complication of T2DM that adversely affects the central nervous system homeostasis and function. Histone deacetylase 3 (HDAC3) has been reported to be elevated in T2DM animals and may promote neuroinflammation; however, its involvement in the BBB permeability of T2DM has not been investigated. In this study, we tested our hypothesis that HDAC3 expression and activity are increased in the T2DM mouse brain. Inhibition of HDAC3 may ameliorate T2DM-induced BBB permeability through Nrf2 activation. METHODS: T2DM (db/db, leptin receptor-deficient), genetic non-hyperglycemic control (db/+), and wild-type male mice at the age of 16 weeks were used in this study. HDAC3 expression and activity, Nrf2 activation, and BBB permeability and junction protein expression were examined. The effects of HDAC3 activity on BBB permeability were tested using highly selective HDAC3 inhibitor RGFP966. In primary cultured human brain microvascular endothelial cells (HBMEC), hyperglycemia (25 mM glucose) plus interleukin 1 beta (20 ng/ml) (HG-IL1ß) served as T2DM insult in vitro. The effects of HDAC3 on transendothelial permeability were investigated by FITC-Dextran leakage and trans-endothelial electrical resistance, and the underlying molecular mechanisms were investigated using Western blot, q-PCR, co-immunoprecipitation, and immunocytochemistry for junction protein expression, miR-200a/Keap1/Nrf2 pathway regulation. RESULTS: HDAC3 expression and activity were significantly increased in the hippocampus and cortex of db/db mice. Specific HDAC3 inhibition significantly ameliorated BBB permeability and junction protein downregulation in db/db mice. In cultured HBMEC, HG-IL1ß insult significantly increased transendothelial permeability and reduced junction protein expression. HDAC3 inhibition significantly attenuated the transendothelial permeability and junction protein downregulation. Moreover, we demonstrated the underlying mechanism was at least in part attributed by HDAC3 inhibition-mediated miR-200a/Keap1/Nrf2 signaling pathway and downstream targeting junction protein expression in T2DM db/db mice. CONCLUSIONS: Our experimental results show that HDAC3 might be a new therapeutic target for BBB damage in T2DM.


Assuntos
Barreira Hematoencefálica/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
7.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817350

RESUMO

Our laboratory and others previously showed that Annexin A2 knockout (A2KO) mice had impaired blood-brain barrier (BBB) development and elevated pro-inflammatory response in macrophages, implying that Annexin A2 (AnxA2) might be one of the key endogenous factors for maintaining homeostasis of the neurovascular unit in the brain. Traumatic brain injury (TBI) is an important cause of disability and mortality worldwide, and neurovascular inflammation plays an important role in the TBI pathophysiology. In the present study, we aimed to test the hypothesis that A2KO promotes pro-inflammatory response in the brain and worsens neurobehavioral outcomes after TBI. TBI was conducted by a controlled cortical impact (CCI) device in mice. Our experimental results showed AnxA2 expression was significantly up-regulated in response to TBI at day three post-TBI. We also found more production of pro-inflammatory cytokines in the A2KO mouse brain, while there was a significant increase of inflammatory adhesion molecules mRNA expression in isolated cerebral micro-vessels of A2KO mice compared with wild-type (WT) mice. Consistently, the A2KO mice brains had a significant increase in leukocyte brain infiltration at two days after TBI. Importantly, A2KO mice had significantly worse sensorimotor and cognitive function deficits up to 28 days after TBI and significantly larger brain tissue loss. Therefore, these results suggested that AnxA2 deficiency results in exacerbated early neurovascular pro-inflammation, which leads to a worse long-term neurologic outcome after TBI.


Assuntos
Anexina A2/deficiência , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Transtornos Cognitivos/metabolismo , Macrófagos/metabolismo , Animais , Anexina A2/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Transtornos Cognitivos/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Regulação para Cima
8.
Stroke ; 49(12): 3039-3049, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571410

RESUMO

Background and Purpose- The complexity and heterogeneity of stroke, as well as the associated comorbidities, may render neuroprotective drugs less efficacious in clinical practice. Therefore, the development of targeted therapies to specific patient subsets has become a high priority in translational stroke research. Ischemic stroke with type 2 diabetes mellitus has a nearly double mortality rate and worse neurological outcomes. In the present study, we tested our hypothesis that rFGF21 (recombinant human fibroblast growth factor 21) administration is beneficial for improving neurological outcomes of ischemic stroke with type 2 diabetes mellitus. Methods- Type 2 diabetes mellitus db/db and nondiabetic genetic control db/+ mice were subjected into permanent focal ischemia of distal middle cerebral artery occlusion, we examined the effects of poststroke administration with rFGF21 in systemic metabolic disorders, inflammatory gatekeeper PPARγ (peroxisome proliferator-activated receptor γ) activity at 3 days, mRNA expression of inflammatory cytokines and microglia/macrophage activation at 7 days in the perilesion cortex, and last neurological function deficits, ischemic brain infarction, and white matter integrity up to 14 days after stroke of db/db mice. Results- After permanent focal ischemia, diabetic db/db mice presented confounding pathological features, including metabolic dysregulation, more severe brain damage, and neurological impairment, especially aggravated proinflammatory response and white matter integrity loss. However, daily rFGF21 treatment initiated at 6 hours after stroke for 14 days significantly normalized systemic metabolic disorders, rescued PPARγ activity decline, inhibited proinflammatory cytokine mRNA expression, and M1-like microglia/macrophage activation in the brain. Importantly, rFGF21 also significantly reduced white matter integrity loss, ischemic brain infarction, and neurological function deficits up to 14 days after stroke. The potential mechanisms of rFGF21 may in part consist of potent systematic metabolic regulation and PPARγ-activation promotion-associated antiproinflammatory roles in the brain. Conclusions- Taken together, these results suggest rFGF21 might be a novel and potent candidate of the disease-modifying strategy for treating ischemic stroke with type 2 diabetes mellitus.


Assuntos
Isquemia Encefálica , Encéfalo/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Diabetes Mellitus Tipo 2 , Fatores de Crescimento de Fibroblastos/farmacologia , PPAR gama/efeitos dos fármacos , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/genética , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Microglia/efeitos dos fármacos , PPAR gama/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
9.
New Phytol ; 213(1): 275-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545518

RESUMO

To understand the molecular mechanisms of rice aerial organ development, we identified a mutant gene that caused a significant decrease in the width of aerial organs, termed ABNORMAL VASCULAR BUNDLES (AVB). Histological analysis showed that the slender aerial organs were caused by cell number reduction. In avb, the number of vascular bundles in aerial organs was reduced, whereas the area of the vascular bundles was increased. Ploidy analysis and the in situ expression patterns of histone H4 confirmed that cell proliferation was impaired during lateral primordia development, whereas procambium cells showed a greater ability to undergo cell division in avb. RNA sequencing (RNA-seq) showed that the development process was affected in avb. Map-based cloning and genetic complementation demonstrated that AVB encodes a land plant conserved protein with unknown functions. Our research shows that AVB is involved in the maintenance of the normal cell division pattern in lateral primordia development and that the AVB gene is required for procambium establishment following auxin signaling.


Assuntos
Organogênese , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Divisão Celular/genética , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação/genética , Organogênese/genética , Oryza/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Protoplastos/metabolismo , Frações Subcelulares/metabolismo
10.
Int J Med Sci ; 14(10): 927-936, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28924363

RESUMO

Background: Thrombospondin-1 (TSP-1) is an extracellular matrix protein that plays multiple physiological and pathophysiological roles in the brain. Experimental reports suggest that TSP-1 may have an adverse role in neuronal function recovery under certain injury conditions. However, the roles of TSP-1 in traumatic brain injury (TBI) have not been elucidated. In this study we for the first time investigated the roles of TSP-1 in a controlled cortical impact (CCI) model of TBI in TSP-1 knockout (TSP-1 KO) and wild type (WT) mice. Methods: We examined blood brain-barrier (BBB) damage using at 1 day post-TBI by measuring Evans Blue leakage, and neurological functional recovery at 3 weeks post-TBI by measuring neurological severity score (NSS), wire gripping, corner test and Morris Water Maze (MWM). Mechanistically, we quantified pro-angiogenic biomarkers including cerebral vessel density, vascular endothelial growth factors (VEGF) and angiopoietin-1 (Ang-1) protein expression, synaptic biomarker synaptophysin, and synaptogenesis marker brain-derived neurotrophic factor (BDNF) protein expression in contralateral and ipsilateral (peri-lesion) cortex at 21 days after TBI using immunohistochemistry and Western Blot. Results: TSP-1 is upregulated at early phase of TBI in WT mice. Compared to WT mice, TSP-1 KO (1) significantly worsened TBI-induced BBB leakage at 1 day after TBI; (2) had similar lesion size as WT mice at 3 weeks after TBI; (3) exhibited a significantly worse neurological deficits in motor and cognitive functions; (4) had no significant difference in cerebral vessel density, but significant increase of VEGF and Ang-1 protein expressions in peri-lesion cortex; (5) significantly increased BDNF but not synaptophysin protein level in peri-lesion cortex compared to sham, but both synaptophysin and BDNF expressions were significantly decreased in contralateral cortex compared to WT. Conclusion: Our results suggest that TSP-1 may be beneficial for maintaining BBB integrity in the early phase and functional recovery in late phase after TBI. The molecular mechanisms of TSP-1 in early BBB pathophysiology, and long-term neurological function recovery after TBI need to be further investigated.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Córtex Cerebral/fisiopatologia , Cognição/fisiologia , Trombospondina 1/deficiência , Angiopoietina-1/metabolismo , Animais , Biomarcadores/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/lesões , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Recuperação de Função Fisiológica/fisiologia , Sinaptofisina/metabolismo , Trombospondina 1/genética , Fatores de Tempo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Neurochem ; 136(5): 1017-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670094

RESUMO

Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in youth, but to date, effective therapies are still lacking. Previous studies revealed a marked response of apolipoprotein J (ApoJ) expression to the brain injury. The aim of this study was to determine the potential roles of ApoJ in functional recovery following TBI. After controlled cortex impact (CCI), a TBI model, in adult wild-type mice, ApoJ expression was up-regulated since 6 h post-injury and sustained for 5 days. Animals infused with recombinant human ApoJ intraventricularly at 30 min prior to CCI showed significantly reduced oxidative stress (3-nitrotyrosine, 4-hydroxynonenal) and complement activation (C5b-9). In addition, ApoJ treatment was shown to suppress the inflammatory response (glial activation, cytokine expression), blood-brain barrier disruption (Evans blue extravasation), and cerebral edema (water content) induced by CCI. Concomitantly, improved neuronal maintenance and neurological behavioral performance were observed in ApoJ-treated mice compared with the vehicle group. These findings support a neuroprotective role of ApoJ via multifunctional pathways, providing a novel and encouraging treatment strategy for TBI. Apolipoprotein J (ApoJ) was up-regulated after controlled cortical impact (CCI). Mice infused with human recombinant ApoJ prior to CCI showed reduced expression of complement and oxidative marker proteins as well as reduced inflammatory response and attenuated blood-brain barrier (BBB) disruption and cerebral edema. Neuronal maintenance and behavioral performance were improved by ApoJ infusion. These findings demonstrated the protective function of ApoJ for traumatic brain injury (TBI) therapy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Clusterina/farmacologia , Fármacos Neuroprotetores/farmacologia , Aldeídos/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Clusterina/administração & dosagem , Modelos Animais de Doenças , Infusões Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , Tirosina/análogos & derivados , Tirosina/farmacologia
12.
BMC Neurosci ; 17(1): 51, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27430312

RESUMO

BACKGROUND: Amyloid-beta (Aß) accumulation is a hallmark of Alzheimer's disease (AD) that can lead to neuronal dysfunction and apoptosis. Tumor necrosis factor, alpha-induced protein 1 (TNFAIP1) is an apoptotic protein that was robustly induced in the transgenic C. elegans AD brains. However, the roles of TNFAIP1 in AD have not been investigated. RESULTS: We found TNFAIP1 protein and mRNA levels were dramatically elevated in primary mouse cortical neurons and Neuro2a (N2a) cells exposed to Aß25-35. Knockdown and overexpression of TNFAIP1 significantly attenuated and exacerbated Aß25-35-induced neurotoxicity in N2a cells, respectively. Further studies showed that TNFAIP1 knockdown significantly blocked Aß25-35-induced cleaved caspase 3, whereas TNFAIP1 overexpression enhanced Aß25-35-induced cleaved caspase 3, suggesting that TNFAIP1 plays an important role in Aß25-35-induced neuronal apoptosis. Moreover, we observed that TNFAIP1 was capable of inhibiting the levels of phosphorylated Akt and CREB, and also anti-apoptotic protein Bcl-2. TNFAIP1 overexpression enhanced the inhibitory effect of Aß25-35 on the levels of p-CREB and Bcl-2, while TNFAIP1 knockdown reversed Aß25-35-induced attenuation in the levels of p-CREB and Bcl-2. CONCLUSION: These results suggested that TNFAIP1 contributes to Aß25-35-induced neurotoxicity by attenuating Akt/CREB signaling pathway, and Bcl-2 expression.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Neurônios/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/fisiologia , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fosforilação/fisiologia , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
13.
Metab Brain Dis ; 30(3): 829-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25796222

RESUMO

Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.


Assuntos
Regulação para Baixo/efeitos da radiação , Glucose/deficiência , Glucose/efeitos da radiação , Raios Infravermelhos , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo I/efeitos da radiação , Animais , Hipóxia Celular/fisiologia , Hipóxia Celular/efeitos da radiação , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos da radiação , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Oxigênio/efeitos da radiação , Gravidez
14.
Metab Brain Dis ; 30(2): 491-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24599760

RESUMO

Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neurodegeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-induced mitochondrial dysfunction in neurons. Primary cortical mouse neuronal cultures were subjected to 4 h oxygen-glucose deprivation followed by reoxygenation for 2 h, neurons were then treated with a 2 min exposure to 810-nm NIR. Mitochondrial function markers including MTT reduction and mitochondria membrane potential were measured at 2 h after treatment. Neurotoxicity was quantified 20 h later. Our results showed that 4 h oxygen-glucose deprivation plus 20 h reoxygenation caused 33.8 ± 3.4 % of neuron death, while NIR exposure significantly reduced neuronal death to 23.6 ± 2.9 %. MTT reduction rate was reduced to 75.9 ± 2.7 % by oxygen-glucose deprivation compared to normoxic controls, but NIR exposure significantly rescued MTT reduction to 87.6 ± 4.5 %. Furthermore, after oxygen-glucose deprivation, mitochondria membrane potential was reduced to 48.9 ± 4.39 % of normoxic control, while NIR exposure significantly ameliorated this reduction to 89.6 ± 13.9 % of normoxic control. Finally, NIR significantly rescued OGD-induced ATP production decline at 20 min after NIR. These findings suggest that low intensity NIR can protect neurons against oxygen-glucose deprivation by rescuing mitochondrial function and restoring neuronal energetics.


Assuntos
Córtex Cerebral/efeitos da radiação , Glucose/deficiência , Hipóxia Encefálica/radioterapia , Raios Infravermelhos/uso terapêutico , Doenças Mitocondriais/radioterapia , Neurônios/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Animais , Morte Celular/efeitos da radiação , Córtex Cerebral/citologia , Feminino , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Sais de Tetrazólio , Tiazóis
15.
Stroke ; 45(2): 619-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24368559

RESUMO

BACKGROUND AND PURPOSE: Tissue-type plasminogen activator (tPA) in combination with recombinant annexin A2 (rA2) is known to reduce acute brain damage after focal ischemia. Here, we ask whether tPA-plus-rA2 combination therapy can lead to sustained long-term neurological improvements as well. METHODS: We compared the effects of intravenous high-dose tPA alone (10 mg/kg) versus a combination of low-dose tPA (5 mg/kg) plus 10 mg/kg rA2 in a model of focal embolic cerebral ischemia in rats. All rats were treated at 3 hours after embolization. Brain tissue and neurological outcomes were assessed at 1 month. Surrogate biomarkers for endogenous neurovascular remodeling in peri-infarct area were analyzed by immunohistochemistry. RESULTS: Compared with high-dose tPA alone, low-dose tPA-plus-rA2 significantly decreased infarction and improved neurological function at 1-month poststroke. In peri-infarct areas, tPA-plus-rA2 combination therapy also significantly augmented microvessel density, vascular endothelial growth factor, and synaptophysin expression. CONCLUSIONS: Compared with conventional high-dose tPA alone, combination low-dose tPA plus rA2 therapy may provide a safe and effective way to improve long-term neurological outcomes after stroke.


Assuntos
Anexina A2/uso terapêutico , Antifibrinolíticos/uso terapêutico , Embolia Intracraniana/complicações , Acidente Vascular Cerebral/terapia , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Isquemia Encefálica/patologia , Capilares/patologia , Infarto Cerebral/patologia , Terapia Combinada , Quimioterapia Combinada , Embolização Terapêutica , Imuno-Histoquímica , Embolia Intracraniana/mortalidade , Masculino , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/fisiopatologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Sinaptofisina/biossíntese , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/biossíntese
16.
Neurobiol Dis ; 56: 95-103, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23639789

RESUMO

Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection.


Assuntos
Globinas/fisiologia , Glucose/deficiência , Hipóxia/patologia , Mitocôndrias/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Neurônios/efeitos dos fármacos , Animais , Western Blotting , Morte Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Ciclosporina/farmacologia , Citocromos c/metabolismo , Dependovirus/genética , Globinas/biossíntese , Imuno-Histoquímica , Imunoprecipitação , L-Lactato Desidrogenase/metabolismo , Camundongos , Dilatação Mitocondrial/efeitos dos fármacos , NAD/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Neuroglobina , Neurônios/patologia , Permeabilidade , Cultura Primária de Células , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
17.
Biochem J ; 443(1): 153-64, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22239089

RESUMO

Ngb (neuroglobin) has been identified as a novel endogenous neuroprotectant. However, little is known about the regulatory mechanisms of Ngb expression, especially under conditions of hypoxia. In the present study, we located the core proximal promoter of the mouse Ngb gene to a 554 bp segment, which harbours putative conserved NF-κB (nuclear factor κB)- and Egr1 (early growth-response factor 1) -binding sites. Overexpression and knockdown of transcription factors p65, p50, Egr1 or Sp1 (specificity protein 1) increased and decreased Ngb expression respectively. Experimental assessments with transfections of mutational Ngb gene promoter constructs, as well as EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays, demonstrated that NF-κB family members (p65, p50 and cRel), Egr1 and Sp1 bound in vitro and in vivo to the proximal promoter region of the Ngb gene. Moreover, a κB3 site was found as a pivotal cis-element responsible for hypoxia-induced Ngb promoter activity. NF-κB (p65) and Sp1 were also responsible for hypoxia-induced up-regulation of Ngb expression. Although there are no conserved HREs (hypoxia-response elements) in the promoter of the mouse Ngb gene, the results of the present study suggest that HIF-1α (hypoxia-inducible factor-1α) is also involved in hypoxia-induced Ngb up-regulation. In conclusion, we have identified that NF-κB, Egr1 and Sp1 played important roles in the regulation of basal Ngb expression via specific interactions with the mouse Ngb promoter. NF-κB, Sp1 and HIF-1α contributed to the up-regulation of mouse Ngb gene expression under hypoxic conditions.


Assuntos
Regulação da Expressão Gênica , Globinas/genética , Proteínas do Tecido Nervoso/genética , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Hipóxia Celular , Linhagem Celular Tumoral , Sequência Conservada , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Globinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
18.
Neurosci Lett ; 792: 136941, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367512

RESUMO

Promoting angiogenesis to restore circulation to the ischemic tissue is still an important therapeutic target in stroke. Our group and others previously reported that the Ca2+-regulated, phospholipid-and membrane-binding protein-Annexin A2 (ANXA2) functions in cerebrovascular integrity and retinal neoangiogenesis. Here, we hypothesized that ANXA2 may regulate angiogenesis after stroke, ultimately improve neurological outcomes. Compared with wild type (WT) mice, the density of microvessels in brain and the number of new vessels sprouting from aortic ring were significantly increased in Anxa2 knock-in (Anxa2 KI) mice. After focal cerebral ischemia, proliferation of brain endothelial cells in Anxa2 KI mice was significantly elevated at 7 days post-stroke, which further improved behavioral recovery. To assess the pro-angiogenic mechanisms of ANXA2, we used brain endothelial cells cultures to investigate its effects on cell tube-numbers and migration. Recombinant ANXA2 increased tube-numbers and migration of brain endothelial cells either under normal condition or after oxygen glucose deprivation (OGD) injury. Co-immunoprecipitation experiments demonstrated that these protective effects of recombinant ANXA2 were regulated by interaction with ANXA2 receptor (A2R), a protein found in cancer cells that can interact with ANXA2 to promote cell migration and proliferation, and the ability of ANXA2-A2R to activate AKT/ERK pathways. Inhibition of AKT/ERK diminished recombinant ANXA2-induced angiogenesis in vitro. Taken together, our study indicates that ANXA2 might be involved in angiogenesis after ischemic stroke. Further investigation of ANXA2-A2R will provide a new therapeutic target for stroke.


Assuntos
Anexina A2 , AVC Isquêmico , Animais , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Neovascularização Patológica
19.
Stroke ; 43(2): 567-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22052516

RESUMO

BACKGROUND AND PURPOSE: Poststroke hyperglycemia and diabetes mellitus are associated with lower thrombolytic efficacy and an increased risk of postischemic cerebral hemorrhage. We aimed to develop a rodent model of thrombolysis in diabetic stroke that mimics the clinical situation. Method- Male 6-week Type I diabetic rats (14 weeks old) were subjected to embolic focal stroke and treated with tissue-type plasminogen activator at 1.5 hours. Reperfusion and 24-hour neurological outcomes were measured and compared with nondiabetic control rats. RESULTS: Diabetic rats exhibited resistance to thrombolytic reperfusion, larger infarction volumes, and increased intracerebral hemorrhage. CONCLUSIONS: This animal model would be relevant to future studies investigating pathophysiological mechanisms and in developing new therapeutic approaches to enhance the efficacy of tissue-type plasminogen activator thrombolysis in stroke patients with diabetes or poststroke hyperglycemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Isquemia Encefálica/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Imuno-Histoquímica , Embolia Intracraniana/tratamento farmacológico , Embolia Intracraniana/patologia , Fluxometria por Laser-Doppler , Masculino , Microcirculação/fisiologia , Doenças do Sistema Nervoso/etiologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/etiologia
20.
Fungal Genet Biol ; 49(1): 21-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22146805

RESUMO

The main determinant of pathogenicity in Ustilago maydis is the b-mating locus, where establishment of heterozygosity is sufficient to cause galls/tumors on maize plants. However, matings between haploids where one partner contains a mutation, in e.g., the smu1 gene, encoding a Ste20-like PAK kinase, often show reduced mating and pathogenicity compared to wild type. Here we show that similarly, diploids lacking one copy of smu1, are reduced in production of aerial hyphae, but do not show significantly-reduced virulence. Haplo-insufficiency was also observed for additional genes. UmPde1 is a cyclic phosphodiesterase involved in cAMP turnover as part of the cAMP-dependent PKA pathway. Hsl7 plays a role in cell length and in the filamentous response to low ammonium in haploid cells. Diploids deleted for one copy of either the pde1 or hsl7 genes had reduced or increased production of aerial hyphae, respectively, and both were severely impaired in virulence compared to wild type diploids. rho1 and pdc1 are two genes essential for cell viability in haploids. These genes also displayed haplo-insufficiency for pathogenesis. rho1/Δrho1 diploid cells were defective in pheromone production and detection, aerial hyphae induction, and were avirulent. In contrast, pdc1/Δpdc1 diploid cells only failed to produce tumors when applied to maize whorls. We predict the haplo-insufficiency of most of these signaling components is due to stoichiometric imbalance of the respective gene products with their interacting partners, thereby impairing virulence-induction mechanism(s). Further investigation of the bases for such haplo-insufficiency as well as of additional genes displaying this phenotype will provide important insights into fundamental aspects of development in this organism as well as inter-nuclear communication and genetic control.


Assuntos
Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Ploidias , Ustilago/genética , Ustilago/patogenicidade , Fatores de Virulência/genética , Zea mays/microbiologia , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Ustilago/crescimento & desenvolvimento , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA