Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 134(6): 1066-78, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805098

RESUMO

Nucleosome structural integrity underlies the regulation of DNA metabolism and transcription. Using a synthetic approach, a versatile library of 486 systematic histone H3 and H4 substitution and deletion mutants that probes the contribution of each residue to nucleosome function was generated in Saccharomyces cerevisiae. We probed fitness contributions of each residue to perturbations of chromosome integrity and transcription, mapping global patterns of chemical sensitivities and requirements for transcriptional silencing onto the nucleosome surface. Each histone mutant was tagged with unique molecular barcodes, facilitating identification of histone mutant pools through barcode amplification, labeling, and TAG microarray hybridization. Barcodes were used to score complex phenotypes such as competitive fitness in a chemostat, DNA repair proficiency, and synthetic genetic interactions, revealing new functions for distinct histone residues and new interdependencies among nucleosome components and their modifiers.


Assuntos
Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Cromossomos Fúngicos/metabolismo , Dano ao DNA , Reparo do DNA , Deleção de Genes , Biblioteca Gênica , Inativação Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie
2.
J Phys Chem B ; 126(36): 6802-6810, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001793

RESUMO

Binding to the host membrane is the initial infection step for animal viruses. Sendai virus (SeV), the model respirovirus studied here, utilizes sialic-acid-conjugated glycoproteins and glycolipids as receptors for binding. In a previous report studying single virus binding to supported lipid bilayers (SLBs), we found a puzzling mechanistic difference between the binding of SeV and influenza A virus (strain X31, IAVX31). Both viruses use similar receptors and exhibit similar cooperative binding behavior, but whereas IAVX31 binding was altered by SLB cholesterol concentration, which can stabilize receptor nanoclusters, SeV was not. Here, we propose that differences in viral size distributions can explain this discrepancy; viral size could alter the number of virus-receptor interactions in the contact area and, therefore, the sensitivity to receptor nanoclusters. To test this, we compared the dependence of SeV binding on SLB cholesterol concentration between size-filtered and unfiltered SeV. At high receptor density, the unfiltered virus showed little dependence, but the size-filtered virus exhibited a linear cholesterol dependence, similar to IAVX31. However, at low receptor densities, the unfiltered virus did exhibit a cholesterol dependence, indicating that receptor nanoclusters enhance viral binding only when the number of potential virus-receptor interactions is small enough. We also studied the influence of viral size and receptor nanoclusters on viral mobility following binding. Whereas differences in viral size greatly influenced mobility, the effect of receptor nanoclusters on mobility was small. Together, our results highlight the mechanistic salience of both the distribution of viral sizes and the lateral distribution of receptors in a viral infection.


Assuntos
Vírus da Influenza A , Vírus Sendai , Animais , Colesterol/metabolismo , Vírus da Influenza A/metabolismo , Bicamadas Lipídicas/metabolismo , Ligação Viral
3.
J Bacteriol ; 191(4): 1152-61, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060143

RESUMO

DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Quebras de DNA de Cadeia Dupla , Escherichia coli/genética , Escherichia coli/metabolismo , Resposta SOS em Genética/fisiologia , Bacillus subtilis/efeitos da radiação , Desoxirribonucleases de Sítio Específico do Tipo II , Escherichia coli/efeitos da radiação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia
4.
Trends Genet ; 22(1): 56-63, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16309778

RESUMO

The Saccharomyces genome-deletion project created >5900 'molecularly barcoded' yeast knockout mutants (YKO mutants). The YKO mutant collections have facilitated large-scale analyses of a multitude of mutant phenotypes. For example, both synthetic genetic array (SGA) and synthetic-lethality analysis by microarray (SLAM) methods have been used for synthetic-lethality screens. Global analysis of synthetic lethality promises to identify cellular pathways that 'buffer' each other biologically. The combination of global synthetic-lethality analysis, together with global protein-protein interaction analyses, mRNA expression profiling and functional profiling will, in principle, enable construction of a cellular 'wiring diagram' that will help frame a deeper understanding of human biology and disease.


Assuntos
Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Deleção de Genes , Perfilação da Expressão Gênica , Genes Fúngicos , Genes Letais , Técnicas Genéticas , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/genética , RNA Mensageiro/genética
5.
Methods Mol Biol ; 416: 221-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18392971

RESUMO

Comprehensive collections of open reading frame (ORF) deletion mutant strains exist for the budding yeast Saccharomyces cerevisiae. With great prescience, these strains were designed with short molecular bar codes or TAGs that uniquely mark each deletion allele, flanked by shared priming sequences. These features have enabled researchers to handle yeast mutant collections as complex pools of approximately 6000 strains. The presence of any individual mutant within a pool can be assessed indirectly by measuring the relative abundance of its corresponding TAG(s) in genomic DNA prepared from the pool. This is readily accomplished by wholesale polymerase chain reaction (PCR) amplification of the TAGs using fluorescent oligonucleotide primers that recognize the common flanking sequences, followed by hybridization of the labeled PCR products to a TAG oligonucleotide microarray. Here we describe a method-diploid-based synthetic lethality analysis by microarray (dSLAM)-whereby such pools can be manipulated to rapidly construct and assess the fitness of 6000 double-mutant strains in a single experiment. Analysis of double-mutant strains is of growing importance in defining the spectrum of essential cellular functionalities and in understanding how these functionalities interrelate.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Genes Letais , Mutação/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Deleção de Genes , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico
6.
Bioinformatics ; 22(24): 3054-60, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17060357

RESUMO

MOTIVATION: Microarray data are susceptible to a wide-range of artifacts, many of which occur on physical scales comparable to the spatial dimensions of the array. These artifacts introduce biases that are spatially correlated. The ability of current methodologies to detect and correct such biases is limited. RESULTS: We introduce a new approach for analyzing spatial artifacts, termed 'conditional residual analysis for microarrays' (CRAM). CRAM requires a microarray design that contains technical replicates of representative features and a limited number of negative controls, but is free of the assumptions that constrain existing analytical procedures. The key idea is to extract residuals from sets of matched replicates to generate residual images. The residual images reveal spatial artifacts with single-feature resolution. Surprisingly, spatial artifacts were found to coexist independently as additive and multiplicative errors. Efficient procedures for bias estimation were devised to correct the spatial artifacts on both intensity scales. In a survey of 484 published single-channel datasets, variance fell 4- to 12-fold in 5% of the datasets after bias correction. Thus, inclusion of technical replicates in a microarray design affords benefits far beyond what one might expect with a conventional 'n = 5' averaging, and should be considered when designing any microarray for which randomization is feasible. AVAILABILITY: CRAM is implemented as version 2 of the hoptag software package for R, which is included in the Supplementary information.


Assuntos
Algoritmos , Artefatos , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Perfilação da Expressão Gênica/normas , Microscopia de Fluorescência/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Nucleic Acids Res ; 33(16): e140, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166654

RESUMO

Saccharomyces cerevisiae knockout collection TAG microarrays are an emergent platform for rapid, genome-wide functional characterization of yeast genes. TAG arrays report abundance of unique oligonucleotide 'TAG' sequences incorporated into each deletion mutation of the yeast knockout collection, allowing measurement of relative strain representation across experimental conditions for all knockout mutants simultaneously. One application of TAG arrays is to perform genome-wide synthetic lethality screens, known as synthetic lethality analyzed by microarray (SLAM). We designed a fully defined spike-in pool to resemble typical SLAM experiments and performed TAG microarray hybridizations. We describe a method for analyzing two-color array data to efficiently measure the differential knockout strain representation across two experimental conditions, and use the spike-in pool to show that the sensitivity and specificity of this method exceed typical current approaches.


Assuntos
Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Sitios de Sequências Rotuladas , Interpretação Estatística de Dados , Corantes Fluorescentes , Genes Letais , Genoma Fúngico , Deleção de Sequência
8.
Nucleic Acids Res ; 33(12): e103, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15994458

RESUMO

A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3-6% and 15-18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens.


Assuntos
Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Corantes , Indicadores e Reagentes , Análise de Sequência com Séries de Oligonucleotídeos/normas , Reação em Cadeia da Polimerase
9.
PLoS One ; 6(10): e25830, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998704

RESUMO

Auxotrophic marker genes such as URA3, LEU2, and HIS3 in Saccharomyces cerevisiae have long been used to select cells that have been successfully transformed with recombinant DNA. A longstanding challenge in working with these genes is that counterselection procedures are often lacking. This paper describes the unexpected discovery of a simple plate assay that imparts a bright red stain to cells experiencing nutritional stress from the lack of a marker gene. The procedure specifically stains a zinc-rich vesicular compartment analogous to the zinc-rich secretory vesicles found in insulin-secreting pancreatic islet cells and glutamate-secreting neurons. Staining was greatly diminished in zap1 mutants, which lack a homeostatic activator of zinc uptake, and in cot1 zrc1 double mutants, which lack the two yeast homologs of mammalian vesicle-specific zinc export proteins. Only one of 93 strains with temperature-sensitive alleles of essential genes exhibited an increase in dithizone staining at its non-permissive temperature, indicating that staining is not simply a sign of growth-arrested or dying cells. Remarkably, the procedure works with most commonly used marker genes, highlights subtle defects, uses no reporter constructs or expensive reagents, requires only a few hours of incubation, yields visually striking results without any instrumentation, and is not toxic to the cells. Many potential applications exist for dithizone staining, both as a versatile counterscreen for auxotrophic marker genes and as a powerful new tool for the genetic analysis of a biomedically important vesicular organelle.


Assuntos
Ditizona/metabolismo , Genes Fúngicos/genética , Marcadores Genéticos/genética , Espaço Intracelular/metabolismo , Saccharomyces cerevisiae/citologia , Coloração e Rotulagem/métodos , Zinco/metabolismo , Sobrevivência Celular , Células Clonais/citologia , Cor , Permeabilidade , Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo
10.
Genetics ; 186(2): 725-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660648

RESUMO

The exact molecular mechanisms by which the environmental pollutant arsenic works in biological systems are not completely understood. Using an unbiased chemogenomics approach in Saccharomyces cerevisiae, we found that mutants of the chaperonin complex TRiC and the functionally related prefoldin complex are all hypersensitive to arsenic compared to a wild-type strain. In contrast, mutants with impaired ribosome functions were highly arsenic resistant. These observations led us to hypothesize that arsenic might inhibit TRiC function, required for folding of actin, tubulin, and other proteins postsynthesis. Consistent with this hypothesis, we found that arsenic treatment distorted morphology of both actin and microtubule filaments. Moreover, arsenic impaired substrate folding by both bovine and archaeal TRiC complexes in vitro. These results together indicate that TRiC is a conserved target of arsenic inhibition in various biological systems.


Assuntos
Chaperonina com TCP-1/antagonistas & inibidores , Óxidos/toxicidade , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Actinas/química , Actinas/metabolismo , Trióxido de Arsênio , Arsenicais , Western Blotting , Chaperonina com TCP-1/química , Chaperonina com TCP-1/metabolismo , Imunofluorescência , Mathanococcus/efeitos dos fármacos , Proteínas dos Microtúbulos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/química , Mutação , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
11.
Mol Microbiol ; 67(2): 350-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067541

RESUMO

The bacterial non-homologous end-joining (NHEJ) apparatus is a two-component system that uses Ku and LigD to repair DNA double-strand breaks. Although the reaction mechanism has been extensively studied, much less is known about the physiological role of bacterial NHEJ. Recent studies suggest that NHEJ acts under conditions where DNA replication is reduced or absent (such as in a spore or stationary phase). Interestingly, genes encoding Ku and LigD have been identified in a wide range of bacteria that can chronically infect eukaryotic hosts. Strikingly, Sinohizobium meliloti, an intracellular symbiont of legume plants, carries four genes encoding Ku homologues (sku1 to sku4). Deletion analysis of the sku genes indicated that all Ku homologues are functional. One of these genes, sku2, is strongly expressed in free-living cells, as well as in bacteroid cells residing inside of the host plant. To visualize the NHEJ apparatus in vivo, SKu2 protein was fused to yellow fluorescent protein (YFP). Ionizing radiation (IR) induced focus formation of SKu2-YFP in free-living cells in a dosage-dependent manner. Moreover, SKu2-YFP foci formed in response to IR in non-dividing bacteroids, indicating that NHEJ system is functional even during the chronic infection phase of symbiosis.


Assuntos
Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Medicago sativa/microbiologia , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Genes Reporter , Medicago sativa/enzimologia , Medicago sativa/fisiologia , Radiação Ionizante , Deleção de Sequência , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/efeitos da radiação , Simbiose
12.
Genes Dev ; 22(15): 2062-74, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676811

RESUMO

Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular viability, and led us to show that deacetylation of the histone variant Htz1p at Lys 14 is mediated by Hda1p. Studies of the essential nucleosome acetyltransferase of H4 (NuA4) revealed acetylation-dependent protein stabilization of Yng2p, a potential nonhistone substrate of NuA4 and Rpd3C, and led to a new functional organization model for this critical complex. We also found that DNA double-stranded breaks (DSBs) result in local recruitment of the NuA4 complex, followed by an elaborate NuA4 remodeling process concomitant with Rpd3p recruitment and histone deacetylation. These new characterizations of the HDA and NuA4 complexes demonstrate how systematic analyses of genetic interactions may help illuminate the mechanisms of intricate cellular processes.


Assuntos
Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Acetilação , Acetiltransferases , Análise por Conglomerados , Reparo do DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Cinética , Modelos Biológicos , Modelos Genéticos , Mutação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Methods ; 41(2): 206-21, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17189863

RESUMO

Analysis of genetic interactions has been extensively exploited to study gene functions and to dissect pathway structures. One such genetic interaction is synthetic lethality, in which the combination of two non-lethal mutations leads to loss of organism viability. We have developed a dSLAM (heterozygote diploid-based synthetic lethality analysis with microarrays) technology that effectively studies synthetic lethality interactions on a genome-wide scale in the budding yeast Saccharomyces cerevisiae. Typically, a query mutation is introduced en masse into a population of approximately 6000 haploid-convertible heterozygote diploid Yeast Knockout (YKO) mutants via integrative transformation. Haploid pools of single and double mutants are freshly generated from the resultant heterozygote diploid double mutant pool after meiosis and haploid selection and studied for potential growth defects of each double mutant combination by microarray analysis of the "molecular barcodes" representing each YKO. This technology has been effectively adapted to study other types of genome-wide genetic interactions including gene-compound synthetic lethality, secondary mutation suppression, dosage-dependent synthetic lethality and suppression.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Genes Letais , Genoma , Análise em Microsséries/métodos , Saccharomyces cerevisiae/genética , Sequência de Bases , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Dados de Sequência Molecular , Mutação , Oligonucleotídeos/genética
14.
Cell ; 124(5): 1069-81, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16487579

RESUMO

A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians against lethal spontaneous DNA damage, efficient repair of which requires the functions of the DNA-damage checkpoint signaling and multiple DNA-repair pathways. This genome-wide genetic interaction network also identified novel components (DIA2, NPT1, HST3, HST4, and the CSM1 module) that potentially contribute to mitotic DNA replication and genomic stability and revealed novel functions of well-studied genes (the CTF18 module) in DRC signaling. This network will guide more detailed characterization of mechanisms governing DNA integrity in yeast and other organisms.


Assuntos
DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Fúngico/química , Genoma Fúngico , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Mol Cell ; 16(3): 487-96, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15525520

RESUMO

Study of mutant phenotypes is a fundamental method for understanding gene function. The construction of a near-complete collection of yeast knockouts (YKO) and the unique molecular barcodes (or TAGs) that identify each strain has enabled quantitative functional profiling of Saccharomyces cerevisiae. By using these TAGs and the SGA reporter, MFA1pr-HIS3, which facilitates conversion of heterozygous diploid YKO strains into haploid mutants, we have developed a set of highly efficient microarray-based techniques, collectively referred as dSLAM (diploid-based synthetic lethality analysis on microarrays), to probe genome-wide gene-chemical and gene-gene interactions. Direct comparison revealed that these techniques are more robust than existing methods in functional profiling of the yeast genome. Widespread application of these tools will elucidate a comprehensive yeast genetic network.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico , Mutação/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Perfilação da Expressão Gênica/métodos , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA