Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Idioma
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 29(5): 1397-1404, 2018 May.
Artigo em Zh | MEDLINE | ID: mdl-29797870

RESUMO

To examine the allocation of rice photosynthates and its response to the elevated CO2 (800 µL·L-1) and N fertilization (100 mg·kg-1) at both tillering stage and booting stage in plant-soil system, rice was continually labelled with 13CO2. The results showed that the rice root biomass at the tillering stage and the shoot biomass at the booting stage were significantly increased under elevated CO2. Elevated CO2 increased the rice biomass and root-shoot ratio at tillering stage, but reduced it at booting stage. Under elevated CO2, N fertilization promoted shoot biomass during rice growth, but significantly decreased the root biomass at booting stage. Elevated CO2 significantly increased the allocation of assimilated 13C to the soil at the booting stage. N fertilization did not promote the elevated CO2-induced stimulation of assimilated 13C allocated to the soil, and it even decreased the proportion of assimilated 13C in the soil. In summary, elevated CO2 increased the photosynthetic C allocation into soil and promoted the turnover of soil organic carbon in paddy soil. N fertilization enhanced rice shoot biomass but decreased the belowground allocation of photosynthetic C.


Assuntos
Dióxido de Carbono , Oryza/fisiologia , Fotossíntese , Biomassa , Fertilizantes , Nitrogênio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA