Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
PLoS Pathog ; 20(7): e1012321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990823

RESUMO

Vibriosis is one of the most serious diseases that commonly occurs in aquatic animals, thus, shaping a steady inherited resistance trait in organisms has received the highest priority in aquaculture. Whereas, the mechanisms underlying the development of such a resistance trait are mostly elusive. In this study, we constructed vibriosis-resistant and susceptible families of the Pacific white shrimp Litopenaeus vannamei after four generations of artificial selection. Microbiome sequencing indicated that shrimp can successfully develop a colonization resistance trait against Vibrio infections. This trait was characterized by a microbial community structure with specific enrichment of a single probiotic species (namely Shewanella algae), and notably, its formation was inheritable and might be memorized by host epigenetic remodeling. Regardless of the infection status, a group of genes was specifically activated in the resistant family through disruption of complete methylation. Specifically, hypo-methylation and hyper-expression of genes related to lactate dehydrogenase (LDH) and iron homeostasis might provide rich sources of specific carbon (lactate) and ions for the colonization of S. algae, which directly results in the reduction of Vibrio load in shrimp. Lactate feeding increased the survival of shrimp, while knockdown of LDH gene decreased the survival when shrimp was infected by Vibrio pathogens. In addition, treatment of shrimp with the methyltransferase inhibitor 5-azacytidine resulted in upregulations of LDH and some protein processing genes, significant enrichment of S. algae, and simultaneous reduction of Vibrio in shrimp. Our results suggest that the colonization resistance can be memorized as epigenetic information by the host, which has played a pivotal role in vibriosis resistance. The findings of this study will aid in disease control and the selection of superior lines of shrimp with high disease resistance.


Assuntos
Resistência à Doença , Microbioma Gastrointestinal , Penaeidae , Vibrioses , Vibrio , Animais , Penaeidae/microbiologia , Penaeidae/imunologia , Vibrioses/imunologia , Resistência à Doença/genética , Aquicultura
2.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635971

RESUMO

Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast three-hybrid and RNA immunoprecipitation assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.

3.
Plant Physiol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717740

RESUMO

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

4.
Theor Appl Genet ; 137(3): 62, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418640

RESUMO

KEY MESSAGE: A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.


Assuntos
Glycine max , Locos de Características Quantitativas , Humanos , Glycine max/genética , Estudo de Associação Genômica Ampla , Domesticação , Melhoramento Vegetal , Sementes , Polimorfismo de Nucleotídeo Único
5.
Fish Shellfish Immunol ; 147: 109433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336143

RESUMO

SRC gene encodes scavenger receptor class C, a member of the scavenger receptor family, and has only been identified and investigated in invertebrates. Our previous studies have revealed that SRC is a novel candidate gene associated with body weight in Pacific white shrimp (Litopenaeus vannamei). In order to comprehend the underlying mechanism by which LvSRC affects shrimp growth, we analyzed the structure, phylogeny, expression profiles and RNA interference (RNAi) of this gene in L. vannamei. We found that LvSRC contains two CCP domains and one MAM domain, with the highest expression level in the heart and relatively low expression level in other tissues. Notably, LvSRC exhibited significantly higher expression levels in the fast-growing group among groups with different growth rates, suggesting its potential involvement as a gene contributing to the growth of L. vannamei. RNAi of LvSRC inhibited body length and body weight gain compared to the control groups. Moreover, through RNA-seq analysis, we identified 598 differentially expressed genes (DEGs), including genes associated with growth, immunity, protein processing and modification, signal transduction, lipid synthesis and metabolism. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant changes in the signaling pathways related to growth, lipid metabolism and immune response, suggesting that LvSRC exhibits the potential to participate in diverse physiological processes and immune regulation. These findings deepen our understanding of the structure and function of the SRC in shrimp and lay the foundation for further research into the regulatory mechanism of LvSRC. Additionally, they provide potential applications in shrimp genetics and breeding.


Assuntos
Genes src , Penaeidae , Animais , Transdução de Sinais , Perfilação da Expressão Gênica , Peso Corporal , Receptores Depuradores/genética
6.
BMC Biol ; 20(1): 113, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562825

RESUMO

BACKGROUND: The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS: B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS: Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.


Assuntos
Isópodes , Adaptação Fisiológica/genética , Animais , Tamanho Corporal , Genoma , Isópodes/genética , Filogenia
7.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982906

RESUMO

The Pacific white shrimp Litopenaeus vannamei is the most economically important crustacean in the world. The growth and development of shrimp muscle has always been the focus of attention. Myocyte Enhancer Factor 2 (MEF2), a member of MADS transcription factor, has an essential influence on various growth and development programs, including myogenesis. In this study, based on the genome and transcriptome data of L. vannamei, the gene structure and expression profiles of MEF2 were characterized. We found that the LvMEF2 was widely expressed in various tissues, mainly in the Oka organ, brain, intestine, heart, and muscle. Moreover, LvMEF2 has a large number of splice variants, and the main forms are the mutually exclusive exon and alternative 5' splice site. The expression profiles of the LvMEF2 splice variants varied under different conditions. Interestingly, some splice variants have tissue or developmental expression specificity. After RNA interference into LvMEF2, the increment in the body length and weight decreased significantly and even caused death, suggesting that LvMEF2 can affect the growth and survival of L. vannamei. Transcriptome analysis showed that after LvMEF2 was knocked down, the protein synthesis and immune-related pathways were affected, and the associated muscle protein synthesis decreased, indicating that LvMEF2 affected muscle formation and the immune system. The results provide an important basis for future studies of the MEF2 gene and the mechanism of muscle growth and development in shrimp.


Assuntos
Perfilação da Expressão Gênica , Penaeidae , Animais , Fatores de Transcrição MEF2/genética , Transcriptoma , Regulação da Expressão Gênica , Intestinos , Penaeidae/genética , Imunidade Inata/genética
8.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771179

RESUMO

From the perspective of full-component utilization of woody fiber biomass resources, areca nut husk is an excellent woody fiber biomass feedstock because of its fast regeneration, significant regeneration ability, sustainability, low cost, and easy availability. In this study, fiber cell morphologies, chemical compositions, lignin structures, and carbohydrate contents of areca nut husks were analyzed and compared with those of rice straw, and the application potentials of these two materials as biomass resources were compared. We found that areca nut husk fibers were shorter and wider than those of rice straw; areca nut husk contained more lignin and less ash, as well as less holocellulose than rice straw; areca nut husk and rice straw lignin were obtained by ball milling and phase separation, and areca nut husk lignin was found to be a typical GHS-type lignin. Herein, the yield of lignocresol was higher than that of milled wood lignin for both raw materials, and the molecular size was more homogeneous. Tricin structural monomers were discovered in the lignin of areca nut husk, similar to those present in other types of herbaceous plants. Structures of areca nut husk MWL (AHMWL) and AHLC were comprehensively characterized by quantitative NMR techniques (that is, 1H NMR, 31P NMR, and 2D NMR). The molecular structure of AHLC was found to be closer to the linear structure with more functional groups exposed on the molecular surface, and the hydroxyl-rich p-cresol grafting structure was successfully introduced into the lignin structure. In addition, the carbohydrate content in the aqueous layer of the phase separation system was close to the carbohydrate content in the raw material, indicating that the phase separation method can precisely separate lignin from carbohydrates. These experimental results indicate that the phase separation method as a method for lignin utilization and structure study has outstanding advantages in lignin structure regulation and yield, and areca nut husk lignin is suitable for application in the same phase separation systems as short-period herbs, such as rice straw and wheat grass, and has the advantages of low ash content and high lignification degree, which will provide guidance for the high-value utilization of areca nut husk in the future.


Assuntos
Lignina , Oryza , Lignina/química , Areca , Nozes , Espectroscopia de Ressonância Magnética , Oryza/química , Carboidratos
9.
Proc Biol Sci ; 289(1982): 20221535, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100022

RESUMO

The calcareous shell and sessile lifestyle are the representative phenotypes of many molluscs, which happen to be present in barnacles, a group of unique crustaceans. The origin of these phenotypes is unclear, but it may be embodied in the convergent genetics of such distant groups (interphylum). Herein, we perform comprehensive comparative genomics analysis in barnacles and molluscs, and reveal a genome-wide strong convergent molecular evolution between them, including coexpansion of biomineralization and organic matrix genes for shell formation, and origination of lineage-specific orphan genes for settlement. Notably, the expanded biomineralization gene encoding alkaline phosphatase evolves a novel, highly conserved motif that may trigger the origin of barnacle shell formation. Unlike molluscs, barnacles adopt novel organic matrices and cement proteins for shell formation and settlement, respectively, and their calcareous shells have potentially originated from the cuticle system of crustaceans. Therefore, our study corroborates the idea that selection pressures driving convergent evolution may strongly act in organisms inhabiting similar environments regardless of phylogenetic distance. The convergence signatures shed light on the origin of the shell and sessile lifestyle of barnacles and molluscs. In addition, notable non-convergence signatures are also present and may contribute to morphological and functional specificities.


Assuntos
Thoracica , Animais , Evolução Molecular , Genoma , Moluscos/genética , Filogenia , Thoracica/genética
10.
Ecotoxicol Environ Saf ; 238: 113600, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526454

RESUMO

Temperature serves as an important environmental factor in ecosystems. Understanding the cooperation of various tissues of animals in response to heat stress is the basis for clarifying the regulation mechanism of different species under heat stress. Herein, a comparative transcriptomic analysis was conducted on three tissues (hepatopancreas, gill and muscle) of the Pacific white shrimp Litopenaeus vannamei under heat stress. Three tissues displayed distinct gene expression patterns, suggesting a cooperation based on division of labor might have occurred among them. In hepatopancreas and gill, genes related to ATP generation and utilization were down-regulated, and energetically expensive protein turnover was almost shut down. While in muscle, genes related to ATP generation and utilization, and those involved in several energy-consuming processes were up-regulated. In consistent, significant accumulation of ATP and decrease of total protein concentration were detected in hepatopancreas and gill, while it was opposite in muscle. Therefore, we suggest that different tissues may cooperate with each other simultaneously via energy reallocation in response to heat stress. Less energy was channeled into protein turnover in gill and hepatopancreas, and more energy was required for muscle. This study not only provides a comprehensive understanding of the molecular mechanism of L. vannamei in response to high temperature, but also lays the foundation of mining thermotolerance genes and proposing effective strategies to cope with the high temperature environment.


Assuntos
Penaeidae , Transcriptoma , Trifosfato de Adenosina/metabolismo , Animais , Ecossistema , Resposta ao Choque Térmico/genética , Hepatopâncreas/metabolismo , Penaeidae/metabolismo
11.
Genomics ; 113(6): 3544-3555, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371099

RESUMO

Echinoderms are marine deuterostomes with fascinating adaptation features such as aestivation and organ regeneration. However, post-transcriptional gene regulation by microRNAs (miRNAs) underlying these features are largely unexplored. Here, using homology-based and de novo approaches supported by expression data, we provided a comprehensive annotation of miRNA genes in the sea cucumber Apostichopus japonicus. By linkage and phylogenic analyses, we characterized miRNA genomic organization, evolutionary history and expression regulation. The results showed that sea cucumbers evolved a large number of new miRNAs, which tended to form polycistronic clusters via tandem duplication that had been especially active in the echinoderms. Most new miRNAs were weakly expressed, but miRNA clustering increased the expression level of clustered new miRNAs. The most abundantly expressed new miRNAs were organized in a single tandem cluster (cluster n2), which was activated during aestivation and intestine regeneration. Overall, our analyses suggest that clustering of miRNAs is important for their evolutionary origin, expression control, and functional cooperation.


Assuntos
MicroRNAs , Pepinos-do-Mar , Animais , Análise por Conglomerados , Estivação/genética , Genômica , MicroRNAs/genética , MicroRNAs/metabolismo , Pepinos-do-Mar/genética , Pepinos-do-Mar/metabolismo
12.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955760

RESUMO

Somatic embryogenesis (SE) is a developmental process in which somatic cells undergo dedifferentiation to become plant stem cells, and redifferentiation to become a whole embryo. SE is a prerequisite for molecular breeding and is an excellent platform to study cell development in the majority of plant species. However, the molecular mechanism involved in M. sativa somatic embryonic induction, embryonic and maturation is unclear. This study was designed to examine the differentially expressed genes (DEGs) and miRNA roles during somatic embryonic induction, embryonic and maturation. The cut cotyledon (ICE), non-embryogenic callus (NEC), embryogenic callus (EC) and cotyledon embryo (CE) were selected for transcriptome and small RNA sequencing. The results showed that 17,251 DEGs, and 177 known and 110 novel miRNAs families were involved in embryonic induction (ICE to NEC), embryonic (NEC to EC), and maturation (EC to CE). Expression patterns and functional classification analysis showed several novel genes and miRNAs involved in SE. Moreover, embryonic induction is an active process of molecular regulation, and hormonal signal transduction related to pathways involved in the whole SE. Finally, a miRNA-target interaction network was proposed during M. sativa SE. This study provides novel perspectives to comprehend the molecular mechanisms in M. sativa SE.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Hormônios , Humanos , Medicago sativa/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas
13.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328689

RESUMO

Insulin-like peptide (ILP) has been identified in various crustaceans, but whether it has a similar function in regulating hemolymph glucose as vertebrate insulin is unclear. We analyzed the components of hemolymph sugar in the Pacific white shrimp, Litopenaeus vannamei, and investigated the changes of hemolymph glucose concentration and the expressions of ILP and glucose metabolism genes under different treatments. We found glucose was a major component of hemolymph sugar in shrimp. Starvation caused hemolymph glucose to rise first and then decline, and the raised hemolymph glucose after exogenous glucose injection returned to basal levels within a short time, indicating that shrimp have a regulatory mechanism to maintain hemolymph glucose homeostasis. In addition, injections of bovine insulin and recombinant LvILP protein both resulted in a fast decline in hemolymph glucose. Notably, RNA interference of LvILP did not significantly affect hemolymph glucose levels, but it inhibited exogenous glucose clearance. Based on the detection of glucose metabolism genes, we found LvILP might maintain hemolymph glucose stability by regulating the expression of these genes. These results suggest that ILP has a conserved function in shrimp similar to insulin in vertebrates and plays an important role in maintaining hemolymph glucose homeostasis.


Assuntos
Hemolinfa , Penaeidae , Animais , Bovinos , Glucose/metabolismo , Hemolinfa/metabolismo , Homeostase , Insulina/metabolismo , Insulina Regular Humana , Penaeidae/genética , Penaeidae/metabolismo , Peptídeos/metabolismo
14.
Bull Environ Contam Toxicol ; 109(1): 95-100, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35786734

RESUMO

A specific mortar material (abbreviated as RFT) was designed from industrial solid wastes, such as red mud, fly ash, and iron tailings. It was mainly developed for 3D printing in this work. Mechanical properties, microstructure and heavy metal leaching properties were discussed. The RFT composed of 15% red mud, 45% iron tailings, 9% fly ash, 30% cement, and 1% FDN water reducing agent attained good mechanical properties. Hydration products including Ca(OH)2, ettringite and C-S-H gel were found in RFT through SEM observation. Iron tailings mainly acted as fine aggregates in RFT, and they were wrapped by the C-S-H gels, producing a strong bonding effect between aggregates and cementitious matrix. The leaching toxicity test results proved that the developed RFT mortar materials were environmentally acceptable. Finally, RFT was subjected to a 3D printing test to verify its feasibility as 3D printable construction material.


Assuntos
Cinza de Carvão , Metais Pesados , Materiais de Construção , Resíduos Industriais/análise , Ferro , Metais Pesados/análise , Impressão Tridimensional
15.
Dev Biol ; 465(2): 157-167, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32702356

RESUMO

The compound eye in crustaceans is a main eye type in the animal kingdom, knowledge about the mechanism to determine the development of compound eye is very limited. Paired box protein 6 (Pax6) is generally regarded as a master regulator for eye development. In the present study, a genome-based analysis of the Pax6 gene in the ridge tail white prawn Exopalaemon carinicauda was performed and two members of Pax6 homologs, named Ec-Eyeless (EcEy) and Ec-Twin of eyeless (EcToy) were identified. To understand the function of these two homologs of Pax6 gene in the prawn, the CRISPR/Cas9 genome editing technique was applied to generate EcEy and EcToy knock-out (KO) prawns and their phenotypes were analyzed. The surviving EcEy-KO embryos and larvae exhibited severe abnormal eye morphology, suggesting that EcEy is necessary for the compound eye development in prawn, while no mutant phenotype was found in EcToy-KO individuals. These findings highlighted the conservative role of Pax6 gene in the compound eye formation, and the functional differentiation between EcEy and EcToy gene may reveal a novel regulating mechanism of Pax6 on the compound eye development in the decapods. These data will provide important information for understanding the regulation mechanism for crustacean compound eye development.


Assuntos
Proteínas de Artrópodes , Sistemas CRISPR-Cas , Olho Composto de Artrópodes/embriologia , Decápodes , Mutação , Fator de Transcrição PAX6 , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Decápodes/embriologia , Decápodes/genética , Edição de Genes , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
16.
Tob Control ; 30(5): 534-541, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32709604

RESUMO

BACKGROUND: The rise of the popular e-cigarette, JUUL, has been partly attributed to various teen-friendly e-liquid flavours offered. However, the possible health risks associated with each e-liquid flavour still remain unclear. This research focuses on the possible associations between JUUL flavours and health symptoms using social media data from Reddit. METHODS: Keyword filtering was used to obtain 5,746 JUUL flavour-related posts and 7927 health symptom-related posts from June 2015 to April 2019 from Reddit. Posts from September 2016 to April 2019 were used to conduct temporal analysis for nine health symptom categories and the 8 JUUL flavours. Finally, associations between the JUUL flavours and health symptom categories were examined on the user level using generalised estimating equation models. RESULTS: According to our temporal analysis, Mango and Mint were the most discussed JUUL flavours on Reddit. Respiratory and throat symptoms were the most discussed health issues together with JUUL on Reddit over time. Respiratory symptoms had potential associations with the Mango, Mint and Fruit JUUL flavours. Digestive symptoms had a potential association with the Crème flavour, psychological symptoms had a potential association with the Cucumber flavour, and cardiovascular symptoms had a potential association with the tobacco flavours. CONCLUSIONS: Mango and Mint were the two most mentioned JUUL flavours on Reddit. Certain JUUL flavours were more likely to be mentioned together with certain categories of health symptoms by the same Reddit users. Our findings could prompt further medical research into the health symptoms associated with different e-liquid flavours.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Mídias Sociais , Adolescente , Aromatizantes , Humanos , Paladar , Uso de Tabaco
17.
Mar Drugs ; 19(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804177

RESUMO

Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.


Assuntos
Quitina/biossíntese , Quitinases/genética , Crustáceos/metabolismo , Animais , Quitina/genética , Quitina/metabolismo , Crustáceos/genética , Genômica , Muda/genética
18.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494370

RESUMO

The insulin signaling (IIS) pathway plays an important role in the metabolism, growth, development, reproduction, and longevity of an organism. As a key member of the IIS pathway, insulin-like growth factor binding proteins (IGFBPs) are widely distributed a family in invertebrates and vertebrates that are critical in various aspects of physiology. As an important mariculture species, the growth of Pacific white shrimp, Litopenaeus vannamei, is one of the most concerning characteristics in this area of study. In this study, we identified three IGFBP genes in the genome of L. vannamei and analyzed their gene structures, phylogenetics, and expression profiles. LvIGFBP1 was found to contain three domains (the insulin growth factor binding (IB) domain, the Kazal-type serine proteinase inhibitor (Kazal) domain, and the immunoglobulin C-2 (IGc2) domain), while LvIGFBP2 and LvIGFBP3 only contained a single IB domain. LvIGFBP1 exhibited high expression in most tissues and different developmental stages, while LvIGFBP2 and LvIGFBP3 were only slightly expressed in hemocytes. The RNA interference of LvIGFBP1 resulted in a significantly smaller increment of body weight than that of control groups. These results will improve our understanding of the conservative structure and function of IGFBPs and show potential applications for the growth of shrimp.


Assuntos
Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Penaeidae/genética , Sequência de Aminoácidos , Animais , Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Penaeidae/classificação , Penaeidae/metabolismo , Filogenia , Conformação Proteica , Análise de Sequência de DNA , Transdução de Sinais , Relação Estrutura-Atividade , Transcriptoma
19.
BMC Genomics ; 21(1): 240, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183697

RESUMO

BACKGROUND: Barnacles are specialized marine organisms that differ from other crustaceans in possession of a calcareous shell, which is attached to submerged surfaces. Barnacles have a wide distribution, mostly in the intertidal zone and shallow waters, but a few species inhabit the deep-sea floor. It is of interest to investigate how such sessile crustaceans became adapted to extreme deep-sea environments. We sequenced the transcriptomes of a deep-sea barnacle, Glyptelasma gigas collected at a depth of 731 m from the northern area of the Zhongjiannan Basin, and a shallow-water coordinal relative, Octolasmis warwicki. The purpose of this study was to provide genetic resources for investigating adaptation mechanisms of deep-sea barnacles. RESULTS: Totals of 62,470 and 51,585 unigenes were assembled for G. gigas and O. warwicki, respectively, and functional annotation of these unigenes was made using public databases. Comparison of the protein-coding genes between the deep- and shallow-water barnacles, and with those of four other shallow-water crustaceans, revealed 26 gene families that had experienced significant expansion in G. gigas. Functional annotation showed that these expanded genes were predominately related to DNA repair, signal transduction and carbohydrate metabolism. Base substitution analysis on the 11,611 single-copy orthologs between G. gigas and O. warwicki indicated that 25 of them were distinctly positive selected in the deep-sea barnacle, including genes related to transcription, DNA repair, ligand binding, ion channels and energy metabolism, potentially indicating their importance for survival of G. gigas in the deep-sea environment. CONCLUSIONS: The barnacle G. gigas has adopted strategies of expansion of specific gene families and of positive selection of key genes to counteract the negative effects of high hydrostatic pressure, hypoxia, low temperature and food limitation on the deep-sea floor. These expanded gene families and genes under positive selection would tend to enhance the capacities of G. gigas for signal transduction, genetic information processing and energy metabolism, and facilitate networks for perceiving and responding physiologically to the environmental conditions in deep-sea habitats. In short, our results provide genomic evidence relating to deep-sea adaptation of G. gigas, which provide a basis for further biological studies of sessile crustaceans in the deep sea.


Assuntos
Adaptação Fisiológica/genética , Thoracica/genética , Thoracica/fisiologia , Animais , Temperatura Baixa , Ecossistema , Pressão Hidrostática , Oceanos e Mares , Filogenia , Thoracica/classificação , Transcriptoma
20.
Mol Ecol ; 29(20): 3954-3969, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851672

RESUMO

Hydrothermal vents are unique deep-sea environments exhibiting extreme temperature gradients and toxic concentrations of H2 S that limit the growth of biological communities. Notably, some decapod crustaceans are the dominant organisms inhabiting these environments, and share similar phenotypic and physiological traits, such as white body coloration and chemosynthetic capacity. However, a lack of genomic information has precluded an understanding of these convergent phenotypes. Here, comparative transcriptomic analyses were performed in 14 decapod species, including four deep-sea hydrothermal vent species and 10 shallow-water relatives. Phylogenetic analysis suggested that the four deep-sea species stemmed from different ancestors despite being geographically close, and therefore their similar traits were probably the product of convergent evolution rather than lineal inheritance. A total of 391 positively selected genes, 109 parallel substituted genes and 33 significantly expanded gene families were identified in the deep-sea decapods. Among these, only the SNARE interactions in vesicular transport pathway was significantly enriched, with both positively selected genes and parallel substituted genes, suggesting that specific macromolecule transport might be a strong convergent evolution trait in deep-sea decapods. Furthermore, many genes involved in protein synthesis, processing and energy metabolism were detected under convergent evolution, suggesting a role for adaptive evolution in association with a specific metabolic pathway in response to chemosynthetic nutrition patterns. Moreover, our study suggests that convergently evolved white body colour might have resulted from the contraction of the crustacyanin gene family and the low content of astaxanthin in the body of deep-sea decapods. Therefore, this study provides valuable genetic evidence for convergent evolution in deep-sea decapods.


Assuntos
Decápodes , Fontes Hidrotermais , Aclimatação , Adaptação Fisiológica , Animais , Decápodes/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA