Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dig Dis Sci ; 68(11): 4196-4211, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707747

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is an important cause of graft dysfunction post-liver transplantation, where donor liver with severe steatosis is more sensitive to IRI. Liver IRI involves ferroptosis and can be alleviated by heme oxygenase-1-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs). AIMS: To explore the role and mechanism of HO-1/BMMSCs in severe steatotic liver IRI. METHODS: A severe steatotic liver IRI rat model and a hypoxia/reoxygenation (H/R) of severe steatosis hepatocyte model were established. Liver and hepatocyte damage was evaluated via liver histopathology and cell activity. Ferroptosis was evaluated through ferroptosis indexes. Nuclear factor erythroid 2-related factor 2 (Nrf2) was knocked down in severe steatotic hepatocytes. The role of Nrf2 and AMPK in HO-1/BMMSC inhibition of ferroptosis was examined using the AMP-activated protein kinase (AMPK) pathway inhibitor Compound C. RESULTS: The HO-1/BMMSCs alleviated severe steatotic liver IRI and ferroptosis. HO-1/BMMSCs promoted ferritin heavy chain 1(FTH1), Nrf2, and phosphorylated (p)-AMPK expression in the H/R severe steatotic hepatocytes. Nrf2 knockdown decreased FTH1 expression levels but did not significantly affect p-AMPK expression levels. The protective effect of HO-1/BMMSCs against H/R injury in severe steatotic hepatocytes and the inhibitory effect on ferroptosis were reduced. Compound C decreased p-AMPK, Nrf2, and FTH1 expression levels, weakened the HO-1/BMMSC protective effect against severe steatotic liver IRI and H/R-injured severe steatotic hepatocytes, and reduced the inhibition of ferroptosis. CONCLUSIONS: Ferroptosis was involved in HO-1/BMMSC reduction of severe steatotic liver IRI. HO-1/BMMSCs protected against severe steatotic liver IRI by inhibiting ferroptosis through the AMPK-Nrf2-FTH1 pathway. HO-1/BMMSCs activate AMPK, which activates Nrf2, promotes its nuclear transcription, then promotes the expression of its downstream protein FTH1, thereby inhibiting ferroptosis and attenuating severe steatotic liver IRI in rats. Glu: glutamic acid; Cys: cystine; GSH: glutathione; GPX4: glutathione peroxidase 4; HO-1/BMMSCs: HO-1-modified BMMSCs; Fer-1: ferrostatin-1; DFO: deferoxamine; FTH1: ferritin heavy chain1; p-AMPK: phosphorylated AMP-activated protein kinase; Nrf2: nuclear factor erythroid 2-related factor 2; IRI: ischemia-reperfusion injury; MCD: methionine-choline deficiency.

2.
J Nanobiotechnology ; 20(1): 196, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459211

RESUMO

BACKGROUND: Steatotic livers tolerate ischemia-reperfusion injury (IRI) poorly, increasing the risk of organ dysfunction. Ferroptosis is considered the initiating factor of organ IRI. Heme oxygenase oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) (HO-1/BMMSCs) can reduce hepatic IRI; however, the role of ferroptosis in IRI of steatotic grafts and the effect of HO-1/BMMSCs-derived exosomes (HM-exos) on ferroptosis remain unknown. METHODS: A model of rat liver transplantation (LT) with a severe steatotic donor liver and a model of hypoxia and reoxygenation (H/R) of steatotic hepatocytes were established. Exosomes were obtained by differential centrifugation, and the differentially expressed genes (DEGs) in liver after HM-exo treatment were detected using RNA sequencing. The expression of ferroptosis markers was analyzed. microRNA (miRNA) sequencing was used to analyze the miRNA profiles in HM-exos. RESULTS: We verified the effect of a candidate miRNA on ferroptosis of H/R treated hepatocytes, and observed the effect of exosomes knockout of the candidate miRNA on hepatocytes ferroptosis. In vitro, HM-exo treatment reduced the IRI in steatotic grafts, and enrichment analysis of DEGs suggested that HM-exos were involved in the regulation of the ferroptosis pathway. In vitro, inhibition of ferroptosis by HM-exos reduced hepatocyte injury. HM-exos contained more abundant miR-124-3p, which reduced ferroptosis of H/R-treated cells by inhibiting prostate six transmembrane epithelial antigen 3 (STEAP3), while overexpression of Steap3 reversed the effect of mir-124-3p. In addition, HM-exos from cell knocked out for miR-124-3p showed a weakened inhibitory effect on ferroptosis. Similarly, HM-exo treatment increased the content of miR-124-3p in grafts, while decreasing the level of STEAP3 and reducing the degree of hepatic ferroptosis. CONCLUSION: Ferroptosis is involved in the IRI during LT with a severe steatotic donor liver. miR-124-3p in HM-exos downregulates Steap3 expression to inhibit ferroptosis, thereby attenuating graft IRI, which might be a promising strategy to treat IRI in steatotic grafts.


Assuntos
Exossomos , Ferroptose , Transplante de Fígado , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Animais , Exossomos/metabolismo , Ferroptose/fisiologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Doadores Vivos , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
3.
Future Microbiol ; 19: 413-429, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38305222

RESUMO

Aims: To investigate the effects of Ferrostatin-1 (Fer-1) on improving the prognosis of liver transplant recipients with steatotic liver grafts and regulating gut microbiota in rats. Methods: We obtained steatotic liver grafts and established a liver transplantation model. Recipients were divided into sham, liver transplantation and Fer-1 treatment groups, which were assessed 1 and 7 days after surgery (n = 6). Results & conclusion: Fer-1 promotes recovery of the histological structure and function of steatotic liver grafts and the intestinal tract, and improves inflammatory responses of recipients following liver transplantation. Fer-1 reduces gut microbiota pathogenicity, and lowers iron absorption and improves fat metabolism of recipients, thereby protecting steatotic liver grafts.


Assuntos
Cicloexilaminas , Fígado Gorduroso , Microbioma Gastrointestinal , Transplante de Fígado , Fenilenodiaminas , Animais , Ratos , Fígado/patologia , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Prognóstico
4.
Cell Signal ; 109: 110793, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414107

RESUMO

Donor shortage is a major problem that limits liver transplantation availability. Steatotic donor liver presents a feasible strategy to solve this problem. However, severe ischemia-reperfusion injury (IRI) is an obstacle to the adoption of steatotic transplanted livers. Evidence from our prior studies indicated that bone marrow mesenchymal stem cells modified with heme oxygenase-1 (HMSCs) can attenuate non-steatotic liver IRI. However, the contribution of HMSCs in transplanted steatotic liver IRI is unclear. Here, HMSCs and their derived small extracellular vesicles (HM-sEVs) alleviated IRI in transplanted steatotic livers. After liver transplantation, there was significant enrichment of the differentially expressed genes in the glutathione metabolism and ferroptosis pathways, accompanied by ferroptosis marker upregulation. The HMSCs and HM-sEVs suppressed ferroptosis and attenuated IRI in the transplanted steatotic livers. MicroRNA (miRNA) microarray and validation experiments indicated that miR-214-3p, which was abundant in the HM-sEVs, suppressed ferroptosis by targeting cyclooxygenase 2 (COX2). In contrast, COX2 overexpression reversed this effect. Knockdown of miR-214-3p in the HM-sEVs diminished its ability to suppress ferroptosis and protect liver tissues/cells. The findings suggested that HM-sEVs suppressed ferroptosis to attenuate transplanted steatotic liver IRI via the miR-214-3p-COX2 axis.


Assuntos
Vesículas Extracelulares , Fígado Gorduroso , Ferroptose , Transplante de Fígado , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Humanos , Transplante de Fígado/efeitos adversos , Ciclo-Oxigenase 2 , Medula Óssea , Doadores Vivos , Fígado , Traumatismo por Reperfusão/genética , MicroRNAs/genética
5.
Front Microbiol ; 13: 905567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756057

RESUMO

The present study aimed to explore whether heme oxygenase-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) have a protective effect on liver transplantation with steatotic liver grafts in rats, and to determine the role of the intestinal microbiota in such protection. HO-1/BMMSCs were obtained by transduction of Hmox1 gene [encoding heme oxygenase (HO-1)]-encoding adenoviruses into primary rat BMMSCs. Steatotic livers were obtained by feeding rats a high-fat diet, and a model of liver transplantation with steatotic liver grafts was established. The recipients were treated with BMMSCs, HO-1/BMMSCs, or neither, via the portal vein. Two time points were used: postoperative day 1 (POD 1) and POD 7. The results showed that under the effect of HO-1/BMMSCs, the degree of steatosis in the liver grafts was significantly reduced, and the level of liver enzymes and the levels of pro-inflammatory cytokines in plasma were reduced. The effect of HO-1/BMMSCs was better than that of pure BMMSCs in the prolongation of the rats' postoperative time. In addition, HO-1/BMMSCs promoted the recovery of recipients' intestinal structure and function, especially on POD 7. The intestinal villi returned to normal, the expression of tight junction proteins was restored, and intestinal permeability was reduced on POD 7. The intestinal bacterial of the LT group showed significantly weakened energy metabolism and overgrowth. On POD 1, the abundance of Akkermansiaceae was higher. On POD 7, the abundance of Clostridiaceae increased, the level of lipopolysaccharide increased, the intestinal mucosal barrier function was destroyed, and the levels of several invasive bacteria increased. When treated with HO-1/BMMSCs, the energy metabolism of intestinal bacteria was enhanced, and on POD 1, levels bacteria that protect the intestinal mucosa, such as Desulfovibrionaceae, increased significantly. On POD 7, the changed intestinal microbiota improved lipid metabolism and increased the levels of butyrate-producing bacteria, such as Lachnospiraceae. In conclusion, HO-1/BMMSCs have protective effects on steatotic liver grafts and the intestinal barrier function of the recipients. By improving lipid metabolism and increasing the abundance of butyrate-producing bacteria, the changed intestinal microbiota has a protective effect and prolongs the recipients' survival time.

6.
Oxid Med Cell Longev ; 2022: 6520789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720183

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is an inevitable result of liver surgery. Steatotic livers are extremely sensitive to IRI and have worse tolerance. Ferroptosis is considered to be one of the main factors of organ IRI. This study is aimed at exploring the role of ferroptosis in the effect of heme oxygenase-1-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) on steatotic liver IRI and its mechanism. An IRI model of a steatotic liver and a hypoxia reoxygenation (HR) model of steatotic hepatocytes (SHPs) were established. Rat BMMSCs were extracted and transfected with the Ho1 gene to establish HO-1/BMMSCs, and their exosomes were extracted by ultracentrifugation. Ireb2 was knocked down to verify its role in ferroptosis and cell injury in SHP-HR. Public database screening combined with quantitative real-time reverse transcription PCR identified microRNAs (miRNAs) targeting Ireb2 in HO-1/BMMSCs exosomes. miR-29a-3p mimic and inhibitor were used for functional verification experiments. Liver function, histopathology, terminal deoxynulceotidyl transferase nick-end-labeling staining, cell viability, mitochondrial membrane potential, and cell death were measured to evaluate liver tissue and hepatocyte injury. Ferroptosis was assessed by detecting the levels of IREB2, Fe2+, malondialdehyde, glutathione, lipid reactive oxygen species, glutathione peroxidase 4, prostaglandin-endoperoxide synthase 2 mRNA, and mitochondrial morphology. The results revealed that HO-1/BMMSCs improved liver tissue and hepatocyte injury and suppressed ferroptosis in vivo and in vitro. The expression of IREB2 was increased in steatotic liver IRI and SHP-HR. Knocking down Ireb2 reduced the level of Fe2+ and inhibited ferroptosis. HO-1/BMMSC exosomes reduced the expression of IREB2 and inhibited ferroptosis and cell damage. Furthermore, we confirmed high levels of miR-29a-3p in HO-1/BMMSCs exosomes. Overexpression of miR-29a-3p downregulated the expression of Ireb2 and inhibited ferroptosis. Downregulation of miR-29a-3p blocked the protective effect of HO-1/BMMSC exosomes on SHP-HR cell injury. In conclusion, ferroptosis plays an important role in HO-1/BMMSC-mediated alleviation of steatotic liver IRI. HO-1/BMMSCs could suppress ferroptosis by targeting Ireb2 via the exosomal transfer of miR-29a-3p.


Assuntos
Exossomos , Fígado Gorduroso , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose , Exossomos/metabolismo , Fígado Gorduroso/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
7.
Int Immunopharmacol ; 107: 108643, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240383

RESUMO

Immature dendritic cells induce immune tolerance and mature dendritic cells induce acute rejection. We infused bone marrow mesenchymal stem cells (BMMSCs) expressing heme oxygenase 1 (HO-1) (HO-1/BMMSCs) into donation after circulatory death (DCD) livers using normothermic machine perfusion (NMP), and then performed transplantation, with the aim of determining the effects of HO 1/BMMSCs on liver DC maturation and graft rejection. A rat model of acute liver transplantation rejection was established from Lewis to BN rats, in which six experimental groups were set up: Sham operation, static cold storage, NMP, BMMSCs + NMP, HO-1/BMMSCs + NMP (HBP), and NMP + FK506 gavage. Flow cytometry was performed to detect the maturation of DCs and the activation of CD4+ T cells in the liver. In vitro, HO-1/BMMSCs were cocultured with liver DCs, and then the phenotype and ability to stimulate lymphocyte proliferation of DCs were measured. MAPK inhibitors were added to observe the effect of MAPK signaling on DC maturation. The resultsindicatedthatHO-1/BMMSCs could stably colonize the transplanted liver. In the HBP group, rejection was reduced, the maturation of DCs was inhibited, and the infiltration and activation of CD4+ T cells were reduced. In vitro, DCs cocultured with HO-1/BMMSCs showed an immature phenotype and inhibited T cell proliferation. HO-1/BMMSCs inhibited the maturation of DCs by blocking the phosphorylation of p38 and ERK1/2. This study suggested that infusion of HO-1/BMMSCs into DCD livers could reduce acute rejection significantly by inhibiting DC maturation. DC maturation regulation by HO-1/BMMSCs involves ERK1/2/MAPK and p38/MAPK signaling.


Assuntos
Transplante de Fígado , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Heme Oxigenase-1/metabolismo , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Endogâmicos Lew
8.
Stem Cells Int ; 2021: 9935370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285696

RESUMO

Livers from donors after circulatory death (DCD) are inevitably exposed to a longer warm ischemic period, which might increase the incidence of postoperative bile duct complications. Bone marrow mesenchymal stem cells (BMMSCs) have tissue repair properties. The present study was aimed at exploring the repair effect of heme oxygenase-1- (HO-1-) modified BMMSCs (HO-1/BMMSCs) combined with normothermic machine perfusion (NMP) on bile duct injury after DCD liver transplantation and at revealing the underlying mechanisms. Rat livers were exposed to in situ warm ischemia for 30 min; then, NMP was performed through the portal vein for 4 h with BMMSCs, HO-1/BMMSCs, or neither before implantation. Obvious bile duct histological damage and liver functional damage were observed postoperatively. In the group treated with HO-1/BMMSCs combined with NMP (HBP group), liver functions and bile duct histology were improved; meanwhile, cell apoptosis was reduced and cell proliferation was active. A large number of regenerative cells appeared at the injured site, and the defective bile duct epithelium was restored. Dilatation of peribiliary glands (PBGs), proliferation of PBG cells, high expression of vascular endothelial growth factor (VEGF), and increased proportion of bile duct progenitor cells with stem/progenitor cells biomarkers were observed. Blocking Wnt signaling significantly inhibited the repair effect of HO-1/BMMSCs on bile duct injury. In conclusion, HO-1/BMMSCs combined with NMP were relevant to the activation of biliary progenitor cells in PBGs which repaired bile duct injury in DCD liver transplantation via the Wnt signaling pathway. Proliferation and differentiation of PBG cells were involved in the renewal of the injured biliary epithelium.

9.
Stem Cell Res Ther ; 12(1): 587, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819139

RESUMO

BACKGROUND: Liver transplantation (LT) is required in many end-stage liver diseases. Donation after cardiac death (DCD) livers are often used, and treatment of acute rejection (ACR) requires the use of immunosuppressive drugs that are associated with complications. Bone marrow mesenchymal stem cells (BMMSCs) are used in treatment following LT; however, they have limitations, including low colonization in the liver. An optimized BMMSC application method is required to suppress ACR. METHODS: BMMSCs were isolated and modified with the heme oxygenase 1 (HO-1) gene. HO-1/BMMSCs were perfused into donor liver in vitro using a normothermic machine perfusion (NMP) system, followed by LT into rats. The severity of ACR was evaluated based on liver histopathology. Gene chip technology was used to detect differential gene expression, and flow cytometry to analyze changes in natural killer (NK) T cells. RESULTS: NMP induced BMMSCs to colonize the donor liver during in vitro preservation. The survival of HO-1/BMMSCs in liver grafts was significantly longer than that of unmodified BMMSCs. When the donor liver contained HO-1/BMMSCs, the local immunosuppressive effect was improved and prolonged, ACR was controlled, and survival time was significantly prolonged. The application of HO-1/BMMSCs reduced the number of NKT cells in liver grafts, increased the expression of NKT cell co-inhibitory receptors, and reduced NKT cell expression of interferon-γ. CONCLUSIONS: NK cell and CD8+ T cell activation was inhibited by application of HO-1/BMMSCs, which reduced ACR of transplanted liver. This approach could be developed to enhance the success rate of LT.


Assuntos
Transplante de Fígado , Células-Tronco Mesenquimais , Células T Matadoras Naturais , Animais , Humanos , Fígado/metabolismo , Transplante de Fígado/métodos , Doadores Vivos , Células-Tronco Mesenquimais/metabolismo , Perfusão/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA