Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(1): 199-214, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36251623

RESUMO

Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.

2.
Sci Total Environ ; 933: 173160, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735324

RESUMO

Recently, biochar and N fertilizers have been used to tackle low N use efficiency (NUE) in crops across diverse environmental conditions. The coupling of biochar and N fertilizer may impact crop N utilization through different pathways in various soil types. However, there is currently a lack of comprehensive assessment of how coupling effects specifically influence N utilization in paddy and upland crops. We conducted a meta-analysis of 175 peer-reviewed studies to assess the responses of soil properties and crop traits in paddy and upland fields under coupling effects. The results indicate that NUE (+26.1 %) and N uptake (+15.0 %) in paddy fields increase more than in upland fields (+23.7 % and +8.0 %, respectively), with the coupling effect providing NH4+ predominantly for rice and NO3- for upland crops. NH4+ increases in paddy fields (+6.9 %) but decreases in upland fields (-0.7 %), while microbial biomass carbon (MBC) decreases in paddy fields (-2.9 %) and increases in upland fields (+36.0 %). These findings suggest that coupling effects supply soil inorganic nutrients in paddies and affect microbes in uplands, thereby positively affecting crop N utilization. Specifically, the greatest increase in paddy crop yield and N use efficiency occurs when the ratio of N fertilizer to biochar exceeds 1.5 %, and in uplands, it manifests when applying 10-20 t·ha-1 of biochar and <150 kg·ha-1 N fertilizer. In conclusion, this meta-analysis explores the differential effects of biochar and N fertilizer coupling in different arable land types, offering novel insights into the utilization strategies of biochar in agricultural fields.


Assuntos
Agricultura , Carvão Vegetal , Fertilizantes , Nitrogênio , Oryza , Solo , Fertilizantes/análise , Carvão Vegetal/química , Solo/química , Agricultura/métodos , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA