RESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of human lung cancers, which has diverse pathological features. Although many signaling pathways and therapeutic targets have been defined to play important roles in NSCLC, limiting efficacies have been achieved. METHODS: Bioinformatics methods were used to identify differential long non-coding RNA expression in NSCLC. Real-time RT-PCR experiments were used to examine the expression pattern of lncRNA PKMYT1AR, miR-485-5p. Both in vitro and in vivo functional assays were performed to investigate the functional role of PKMYT1AR/miR-485-5p/PKMYT1 axis on regulating cell proliferation, migration and tumor growth. Dual luciferase reporter assay, fluorescent in situ hybridization (FISH), immunoblot, co-immunoprecipitation experiments were used to verify the molecular mechanism. RESULT: Here, we identify a human-specific long non-coding RNA (lncRNA, ENST00000595422), termed PKMYT1AR (PKMYT1 associated lncRNA), that is induced in NSCLC by Yin Yang 1 (YY1) factor, especially in cancerous cell lines (H358, H1975, H1299, H1650, A549 and SPC-A1) compared to that in normal human bronchial epithelium cell line (BEAS-2B). We show that PKMYT1AR high expression correlates with worse clinical outcome, and knockdown of PKMYT1AR inhibits tumor cell proliferation, migration and xenograft tumor formation abilities. Bioinformatic analysis and a luciferase assay demonstrate that PKMYT1AR directly interacts with miR-485-5p to attenuate the inhibitory role on its downstream oncogenic factor PKMYT1 (the protein kinase, membrane-associated tyrosine/threonine 1) in NSCLC. Furthermore, we uncover that miR-485-5p is downregulated in both cancerous cell lines and peripheral blood serum isolated from NSCLC patients compared to reciprocal control groups. Consistently, forced expression of miR-485-5p inhibits the proliferation and migration abilities of tumor cells. Moreover, we provide evidence showing that PKMYT1AR targeting antisense oligonucleotide (ASO) dramatically inhibit tumor growth in vivo. Mechanistic study shows that PKMYT1AR/ miR-485-5p /PKMYT1 axis promotes cancer stem cells (CSCs) maintenance in NSCLC via inhibiting ß-TrCP1 mediated ubiquitin degradation of ß-catenin proteins, which in turn causes enhanced tumorigenesis. CONCLUSIONS: Our findings reveal the critical role of PKMYT1AR/miR-485-5p /PKMYT1 axis during NSCLC progression, which could be used as novel therapeutic targets in the future.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , RNA Longo não Codificante/genética , Via de Sinalização Wnt , Regiões 3' não Traduzidas , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , MicroRNAs , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso , Prognóstico , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estabilidade Proteica , Proteínas Tirosina Quinases/antagonistas & inibidores , Interferência de RNARESUMO
The aim of this study was to reveal the external features of the bronchial artery (BA) system, so as to provide morphological basis for clinic. The BAs in 48 adult cadavers were dissected and analyzed. The number of BAs in 48 cases was 118. The incidence of BA arising from thoracic aorta, right posterior intercostal artery, and right subclavian artery was 69.49, 27.12, and 3.39%, respectively. The origin of BAs in individual specimen might be single, two, or all of them, respectively. According to the different origin and/or origins of BAs, it could be divided into five categories. As for the course of BAs, in this study, all the left BAs arising from thoracic aorta passed forward around the left side of esophagus and then entered left pulmonary hilum; most (n = 15) of the right BAs arising from thoracic aorta passed forward around the left side of esophagus and then entered right pulmonary hilum; a few (n = 8) of the right BAs arising from thoracic passed forward the right side of esophagus and bronchus and then entered right pulmonary hilum. Besides, in our group, the special courses were that right intercostal-bronchial trunk (RICBT) arising from thoracic aorta passed between vertebra and esophagus and gave off BA which curved forward around the right side of esophagus and then entered right pulmonary hilum, common bronchial trunk (CBT) arising from thoracic aorta passed forward around the left side of esophagus laying anterior to bronchus or posterior to bronchus, then dividing into a left and a right BAs entering right and left pulmonary hilum, respectively. In 4 cadavers, the RICBT gave off the radiculomedullary artery and BA in turn, so radiculomedullary artery has the same origin with BA. Of all BAs, the mean diameter of right posterior intercostal artery, CBT, left BA, and right BA was 2.17 ± 0.84, 1.79 ± 0.57, 1.44 ± 0.50, and 1.39 ± 0.38 mm, respectively. The information gained from this study will be of value in clinic application.
Assuntos
Variação Anatômica , Artérias Brônquicas/anatomia & histologia , HumanosRESUMO
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
RESUMO
Although HER2-low breast cancer (BC) constitutes almost 50% of all BC types, its impact on the pathological complete response (pCR) rate and survival in early BC is uncertain. As a result, a systematic review was conducted to compare the pCR rate and survival of HER2-low and HER2-zero BC in the neoadjuvant chemotherapy (NACT) setting. Two reviewers independently performed literature searches using EMBASE, PubMed, and Cochrane Libraries internet databases up to June 2023. Finally, 29 studies with 178,294 patients were included. HER2-low BC had a considerably lower pCR rate compared to HER2-zero BC in the entire population (Risk Ratio [RR] = 0.68, P < .001) and in the hormone receptor (HR)-positive subgroup (RR = 0.73, P = .009), but not in the HR-negative subgroup (RR = 0.99, P = .755). Furthermore, patients with HER2-low BC exhibited prolonged disease-free survival (DFS) and overall survival (OS) compared to those with HER2-zero BC, observed in both the entire cohort (DFS: P = .004; OS: P = .008) and the HR-negative subgroup (DFS: P = .009; OS: P < .001). In the HR-positive population, OS was superior in HER2-low BC patients (P < .001), whereas no significant differences in DFS were observed (P = .064). Our findings imply that the pCR rate and prognosis of HER2-low BC are distinguished from those of HER2-zero BC in early BC treated with NACT, which contributes to a better knowledge of the BC subgroup.
Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Receptor ErbB-2 , Feminino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Quimioterapia Adjuvante/métodos , Intervalo Livre de Doença , Terapia Neoadjuvante/métodos , Prognóstico , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fmolb.2021.799497.].
RESUMO
[This corrects the article DOI: 10.3389/fcell.2021.765772.].
RESUMO
Programmed cell death 2 (PDCD2) is related to cancer progression and chemotherapy sensitivity. The role of PDCD2 in solid cancers (excluding hematopoietic malignancies) and their diagnosis and prognosis remains unclear. The TCGA, CGGA, GEPIA, cBioPortal, and GTEx databases were analyzed for expression, prognostic value, and genetic modifications of PDCD2 in cancer patients. Functional enrichment analysis, CCK8, colony formation assay, transwell assay, and xenograft tumor model were undertaken to study the PDCD2's biological function in glioma (GBMLGG). The PDCD2 gene was associated with solid cancer progression. In the functional enrichment analysis results, PDCD2 was shown to participate in several important GBMLGG biological processes. GBMLGG cells may be inhibited in their proliferation, migration, invasion, and xenograft tumor growth by knocking down PDCD2. Our research can provide new insights into solid cancer prognostic biomarkers of PDCD2.
RESUMO
Mounting evidence has found that tumor microenvironment (TME) plays an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of tumor microenvironment-related genes in immunotherapy and clinical outcomes remain unclear. In this study, 6 TME-related genes (PLK1, LDHA, FURIN, FSCN1, RAB27B, and MS4A1) were identified to construct the prognostic model. The established risk scores were able to predict outcomes at 1, 3, and 5 years with greater accuracy than previously known models. Moreover, the risk score was closely associated with immune cell infiltration and the immunoregulatory genes including T cell exhaustion markers. In conclusion, the TME risk score can function as an independent prognostic biomarker and a predictor for evaluating immunotherapy response in LUAD patients, which provides recommendations for improving patients' response to immunotherapy and promoting personalized tumor immunotherapy in the future.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Microambiente Tumoral/genética , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Complexo CD3 , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteínas de Transporte , Proteínas dos MicrofilamentosRESUMO
Early warning models credit risk play a crucial role in helping the financial institutions to reasonably predict the credit status of family farms and ranches. An attempt is made in this paper to construct a new credit risk early warning model based on Probit regression and Kmeans clustering algorithm, and testing the model by using data from 246 family farms in 12 leagues and cities in Inner Mongolia. First, the credit risk evaluation indicators of family farms and ranches were screened out through a three-combination model with partial correlation analysis, tolerance analysis and Probit regression. Second, the ratios of the Z-squared statistic of a single indicator to the sum of the Z-squared statistics of all the selected indicators were used to measure the weights of the credit evaluation indicators. Finally, four warning levels containing heavy alert level â , medium alert level â ¡, light alert level â ¢ and no alert level â £ were classified by Kmeans clustering with large intra-cluster similarity and small inter-cluster similarity. The empirical evidence shows that the early warning model of credit risk for family farms and ranches is effective.
RESUMO
YTHDF1 is a well-characterized m6A reader protein that is essential for protein translation, stem cell self-renewal, and embryonic development. YTHDF1 regulates target gene expression by diverse molecular mechanisms, such as promoting protein translation or modulating the stability of mRNA. The cellular levels of YTHDF1 are precisely regulated by a complicated transcriptional, post-transcriptional, and post-translational network. Very solid evidence supports the pivotal role of YTHDF1 in embryonic development and human cancer progression. In this review, we discuss how YTHDF1 influences both the physiological and pathological biology of the central nervous, reproductive and immune systems. Therefore we focus on some relevant aspects of the regulatory role played by YTHDF1 as gene expression, complex cell networking: stem cell self-renewal, embryonic development, and human cancers progression. We propose that YTHDF1 is a promising future cancer biomarker for detection, progression, and prognosis. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy.
RESUMO
Deserts are important components of the terrestrial ecosystem, and significantly affect the terrestrial carbon cycle. However, their carbon storage is poorly understood. To evaluate the topsoil carbon storage in Chinese deserts, we systematically collected topsoil samples (to a depth of 10 cm) from 12 deserts in northern China and analyzed their organic carbon storage. We used partial correlation and boosted regression tree (BRT) analysis to analyze the factors influencing the spatial distribution of soil organic carbon density based on climate, vegetation, soil grain-size distribution, and element geochemistry. The total organic carbon pool of Chinese deserts was 4.83 × 108 t, the mean soil organic carbon density was 1.37 ± 0.18 kg C m-2, and the mean turnover time was 16.50 ± 2.66 yr. With the largest area, the Taklimakan Desert had the highest topsoil organic carbon storage (1.77 × 108 t). The organic carbon density was high in the east and low in the west, whereas the turnover time showed the opposite trend. The soil organic carbon density was >2 kg C m-2 in the four sandy lands in the eastern region, and was greater than the values for the eight deserts (0.72 to 1.22 kg C m-2). Grain-size (i.e., the silt and clay contents) had the strongest influence on the organic carbon density in Chinese deserts, followed by element geochemistry. Precipitation was the main climatic factor that affected the distribution of organic carbon density in the deserts. Based on climate and vegetation cover trends during the past 20 years, Chinese deserts have a high potential for future organic carbon sequestration.
RESUMO
Gliomas are the most aggressive type of malignant brain tumors. Recent studies have demonstrated that the existence of glioma stem cells (GSCs) is critical for glioma recurrence, metastasis, and chemo- or radio-therapy resistance. Temozolomide (TMZ) has been used as an initial therapy for gliomas. However, the overall survival time is still limiting due to the lack of effective targets and treatment options. Therefore, identifying novel biomarkers for gliomas, especially for GSCs, is important to improve the clinical outcome in the future. In this study, we identify a human-specific long non-coding RNA (lncRNA, ENSG00000250377), termed GSCAR (glioma stem cell associated lncRNA), which is highly expressed in glioma cancerous tissues and cell lines. We reveal that GSCAR positively correlates with tumor grade. Glioma patients with GSCAR high expression exhibit shortened overall survival time, compared to patients with GSCAR low expression. Furthermore, we show that GSCAR knockdown by shRNAs or antisense oligonucleotide (ASO) reduces tumor cell proliferation, migration and xenograft tumor formation abilities. Mechanistic study shows that GSCAR acts as a ceRNA (competing endogenous RNA) for miR-6760-5p to promote the expression of oncogene SRSF1 (serine and arginine rich splicing factor 1). In addition, GSCAR mediates the protein complex formation between DHX9 (DExH-Box helicase 9) and IGF2BP2 (insulin-like growth factor 2 mRNA-binding protein 2), leading to the stabilization of SOX2 (sex-determining region Y-box 2) mRNA and then the transcriptional activation of GSCAR. Depleting GSCAR reduces SOX2 expression and GSC self-renewal ability, but promotes tumor cell responses to TMZ. These findings uncover that GSCAR/miR-6760-5p/SRSF1 axis and GSCAR/DHX9-IGF2BP2/SOX2 positive feedback loop are critical for glioma progression, which could be used as prognostic biomarkers and therapeutic targets in the future.
Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , Glioma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Processamento de Serina-Arginina/genéticaRESUMO
[This corrects the article DOI: 10.3389/fonc.2022.929655.].
RESUMO
Background: Lung cancer has the highest death rate among cancers globally. Accumulating evidence has indicated that cancer-related inflammation plays an important role in the initiation and progression of lung cancer. However, the prognosis, immunological role, and associated regulation axis of inflammatory response-related gene (IRRGs) in non-small-cell lung cancer (NSCLC) remains unclear. Methods: In this study, we perform comprehensive bioinformatics analysis and constructed a prognostic inflammatory response-related gene (IRRGs) and related competing endogenous RNA (ceRNA) network. We also utilized the Pearson's correlation analysis to determine the correlation between IRRGs expression and tumor mutational burden (TMB), microsatellite instability (MSI), tumor-immune infiltration, and the drug sensitivity in NSCLC. Growth curve and Transwell assay used to verify the function of SNHG17 on NSCLC progression. Results: First, we found that IRRGs were significantly upregulated in lung cancer, and its high expression was correlated with poor prognosis; high expression of IRRGs was significantly correlated with the tumor stage and poor prognosis in lung cancer patients. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that these IRRGs are mainly involved in the inflammatory and immune response-related signaling pathway in the progression of NSCLC. We utilized 10 prognostic-related genes to construct a prognostic IRRGs model that could predict the overall survival of lung adenocarcinoma (LUAD) patients possessing high specificity and accuracy. Our evidence demonstrated that IRRGs expression was significantly correlated with the TMB, MSI, immune-cell infiltration, and diverse cancer-related drug sensitivity. Finally, we identified the upstream regulatory axis of IRRGs in NSCLC, namely, lncRNA MIR503HG/SNHG17/miR-330-3p/regulatory axis. Finally, knockdown of SNHG17 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and migration. Our findings confirmed that SNHG17 is a novel oncogenic lncRNA and may be a biomarker for the prognosis and diagnosis of LUAD. Conclusion: DNA hypomethylation/lncRNA MIR503HG/SNHG17/microRNA-330-3p/regulatory axis may be a valuable biomarker for prognosis and is significantly correlated with immune cell infiltration in lung cancer.
RESUMO
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.
RESUMO
During the course of tumorigenesis and subsequent metastasis, malignant cells gradually diversify and become more heterogeneous. Consequently, the tumor mass might be infiltrated by diverse immune-related components, including the cytokine/chemokine environment, cytotoxic activity, or immunosuppressive elements. This immunological heterogeneity is universally presented spatially or varies temporally along with tumor evolution or therapeutic intervention across almost all solid tumors. The heterogeneity of anti-tumor immunity shows a profound association with the progression of disease and responsiveness to treatment, particularly in the realm of immunotherapy. Therefore, an accurate understanding of tumor immunological heterogeneity is essential for the development of effective therapies. Facilitated by multi-regional and -omics sequencing, single cell sequencing, and longitudinal liquid biopsy approaches, recent studies have demonstrated the potential to investigate the complexity of immunological heterogeneity of the tumors and its clinical relevance in immunotherapy. Here, we aimed to review the mechanism underlying the heterogeneity of the immune microenvironment. We also explored how clinical assessments of tumor heterogeneity might facilitate the development of more effective personalized therapies.
RESUMO
[This corrects the article DOI: 10.3389/fcell.2021.765772.].
RESUMO
The expression of deoxythymidylate kinase (DTYMK) is up-regulated in liver cancer. However, the underlying biological function and potential mechanisms of DTYMK driving the progression of lung adenocarcinoma remains unclear. In this study, we investigated the role of DTYMK in lung adenocarcinoma and found that the expression of DTYMK in LUAD tissues was significantly higher than that of DTYMK expression in adjacent normal tissues. Kaplan-Meier survival analysis showed that patients with higher DTYMK expression correlated with adverse prognosis. ROC curve analysis showed that the AUC value of DTYMK was 0.914. Correlation analysis showed that DTYMK expression was associated with immune infiltration in LUAD. Finally, we determine that DTYMK regulated cell proliferation, cell migration, and cell cycle of lung adenocarcinoma in vitro. In conclusion, our data demonstrated that DTYMK was correlated with progression and immune infiltration, and could serve as a prognostic biomarker for lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Timidina Monofosfato , Adenocarcinoma de Pulmão/patologia , Prognóstico , Biomarcadores , Microambiente TumoralRESUMO
[This corrects the article DOI: 10.3389/fonc.2022.921200.].
RESUMO
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3) is an adaptor protein expressed mainly in lymphocytes, and plays significant roles in T-cell proliferation and cell survival. However, its expression level, clinical significance, and correlation with tumor-infiltrating immune cells across cancers remain unclear. In this study, we comprehensively examined the expression, dysregulation, and prognostic significance of SASH3, and the correlation with clinicopathological parameters and immune infiltration in pan-cancer. The mRNA and protein expression status of SASH3 were determined by TCGA, GTEx, and UALCAN. Kaplan-Meier analysis utilized the prognostic values of SASH3 in diverse cancers. The association between SASH3 expression and gene mutation, DNA methylation, immune cells infiltration, immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data from the TCGA database. High expression of SASH3 was not only linked to poor OS in ESCC, LAML, LGG, and UVM, but also associated with better OS in CESC, HNSC, LUAD, SARC, SKCM, THYM, and UCEC. As for DSS, a high level of SASH3 correlated with adverse DSS in ESCC, LGG, and UVM, and lowly expressed SASH3 was associated with shorter OS in CESC, HNSC, LUAD, SARC, SKCM, and UCEC. The results of Cox regression and nomogram analyses confirmed that SASH3 was an independent factor for LUAD prognosis. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) results showed that SASH3 was involved in natural killer cell-mediated cytotoxicity, Th17 cell differentiation, PD-L1 expression and PD-1 checkpoint pathway in cancer, NF-kappa B signaling pathway, B-cell receptor signaling pathway, and Toll-like receptor signaling pathway. SASH3 expression was correlated with TMB in 28 cancer types and associated with MSI in 22 cancer types, while there was a negative correlation between SASH3 expression and DNA methylation in diverse human cancer. The high DNA methylation level of SASH3 was correlated with better OS in KIRC and UVM, and associated with poor OS in SKCM. Moreover, we uncover that SASH3 expression was positively associated with the stroma score in 27 cancer types, the microenvironment score, and immune score in 32 cancer types, 38 types of immune cells in 32 cancer types, the 45 immune stimulators, 24 immune inhibitors, 41 chemokines, 18 receptors, and 21 major histocompatibility complex (MHC) molecules in 33 cancer types. Finally, forced SASH3 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and cell migration. Our findings confirmed that SASH3 may be a biomarker for the prognosis and diagnosis of human cancer.