Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Orthop Surg ; 16(3): 532-550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296798

RESUMO

Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-ß, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.


Assuntos
Osteoartrite , Fosfatidilinositol 3-Quinases , Idoso , Pessoa de Meia-Idade , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Osteoartrite/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Membrana Sinovial/patologia , Osteoclastos
2.
Ann Transl Med ; 10(15): 824, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36035002

RESUMO

Background: Preliminary research has shown an inhibited growth rate of well-differentiated laryngeal squamous cell carcinoma cells (FD-LSC-1) in below-background radiation (BBR), but how the cells respond to this environmental stress and the potential mechanisms are yet unknown. The current study aimed to reveal the molecular differences in cells grown under BBR conditions and normal radiation at the transcriptional level. Methods: The expression profiles between FD-LSC-1 cells grown in a deep underground laboratory and above ground laboratory collected on day 4 were investigated by whole-transcriptome analysis, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). Functional analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were then implemented for differentially expressed (DE) mRNAs and target genes of lncRNAs and circRNAs. Co-expression levels and the Bayesian network of DE genes were subsequently constructed, and the reliability of expression patterns were validated by quantitative real-time polymerase chain reaction (PCR). Results: The study identified a total of 671 mRNAs, 286 lncRNAs, 489 circRNAs, and 6 miRNAs as significantly expressed in response to the environmental stress. The GO annotations regarding the biological processes category were mainly biological regulation, metabolic process, response to stimulus, cell cycle, and modification process. The KEGG enrichment analysis indicated that TGF-ß and Hippo signaling played a crucial role in the transcriptional regulation of FD-LSC-1 cell growth under background radiation. Further network construction suggested that the enriched KEGG pathways affected this process by regulating cell proliferation-related genes including SMAD, SMAD7, CDH1, EGR1, and BMP2. Conclusions: Below-background radiation can lead to transcriptional changes in FD-LSC-1 cells cultured in the deep underground. The inhibitory growth effect is associated with multiple biological processes as well as canonical pathways of proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA