Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 80(1): 23-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21450930

RESUMO

Notch-1 (Notch) is a cell surface receptor that regulates cell-fate decisions in the developing nervous system, and it may also have roles in synaptic plasticity in the adult brain. Binding of its ligands results in the proteolytic cleavage of Notch by the γ-secretase enzyme complex, thereby causing the release of a Notch intracellular domain (NICD) that translocates to the nucleus, in which it regulates transcription. Here we show that activation of Notch modulates ischemic neuronal cell death in vitro and in vivo. Specifically, our findings from the use of Notch-1 siRNA or the overexpression of NICD indicate that Notch activation contributes to cell death. Using modified NICD, we demonstrate an apoptosis-inducing function of NICD in both the nucleus and the cytosol. NICD transfection-induced cell death was reduced by blockade of calcium signaling, caspase activation, and Janus kinase signaling. Inhibition of the Notch-activating enzyme, γ-secretase, protected against ischemic neuronal cell death by targeting an apoptotic protease, cleaved caspase-3, nuclear factor-κB (NF-κB), and the pro-death BH3-only protein, Bcl-2-interacting mediator of cell death (Bim). Treatment of mice with a γ-secretase inhibitor, compound E, reduced infarct size and improved functional outcome in a model of focal ischemic stroke. Furthermore, γ-secretase inhibition reduced NICD, p-p65, and Bim levels in vivo. These findings suggest that Notch signaling endangers neurons after ischemic stroke by modulating the NF-κB, pro-death protein Bim, and caspase pathways.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , NF-kappa B/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/enzimologia , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/metabolismo
2.
Biochem Biophys Res Commun ; 404(1): 10-5, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21130746

RESUMO

Accumulation of amyloid-ß (Aß) is widely accepted as the key instigator of Alzheimer's disease (AD). The proposed mechanism is that accumulation of Aß results in inflammatory responses, oxidative damages, neurofibrillary tangles and, subsequently, neuronal/synaptic dysfunction and neuronal loss. Given the critical role of Aß in the disease process, the proteases that produce this peptide are obvious targets. The goal would be to develop drugs that can inhibit the activity of these targets. Protease inhibitors have proved very effective for treating other disorders such as AIDS and hypertension. Mutations in APP (amyloid-ß precursor protein), which flanks the Aß sequence, cause early-onset familial AD, and evidence has pointed to the APP-to-Aß conversion as a possible therapeutic target. Therapies aimed at modifying Aß-related processes aim higher up the cascade and are therefore more likely to be able to alter the progression of the disease. However, it is not yet fully known whether the increases in Aß levels are merely a result of earlier events that were already causing the disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Inibidores de Proteases/uso terapêutico , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Desenho de Fármacos , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
3.
Aging Cell ; 11(4): 559-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22404891

RESUMO

The cause of elevated level of amyloid ß-peptide (Aß42) in common late-onset sporadic [Alzheimer's disease (AD)] has not been established. Here, we show that the membrane lipid peroxidation product 4-hydroxynonenal (HNE) is associated with amyloid and neurodegenerative pathologies in AD and that it enhances γ-secretase activity and Aß42 production in neurons. The γ-secretase substrate receptor, nicastrin, was found to be modified by HNE in cultured neurons and in brain specimens from patients with AD, in which HNE-nicastrin levels were found to be correlated with increased γ-secretase activity and Aß plaque burden. Furthermore, HNE modification of nicastrin enhanced its binding to the γ-secretase substrate, amyloid precursor protein (APP) C99. In addition, the stimulation of γ-secretase activity and Aß42 production by HNE were blocked by an HNE-scavenging histidine analog in a 3xTgAD mouse model of AD. These findings suggest a specific molecular mechanism by which oxidative stress increases Aß42 production in AD and identify HNE as a novel therapeutic target upstream of the γ-secretase cleavage of APP.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Peroxidação de Lipídeos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína
4.
BMB Rep ; 44(2): 135-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21345314

RESUMO

Chronic alcohol consumption contributes to numerous diseases, including cancers, cardiovascular diseases, and liver cirrhosis. Epidemiological studies have shown that excessive alcohol consumption is a risk factor for dementia. Along this line, Alzheimer's disease (AD) is the most common form of dementia and is caused by the accumulation of amyloid-ß (Aß plaques in neurons. In this study, we hypothesized that chronic ethanol consumption is associated with pathological processing of APP in AD. To investigate the relationship between chronic alcohol consumption and Aß production, brain samples from rats fed an alcohol liquid diet for 5 weeks were analyzed. We show that the expression levels of APP, BACE1, and immature nicastrin were increased in the cerebellum, hippocampus, and striatum of the alcohol-fed group compared to the control group. Total nicastrin and PS1 levels were induced in the hippocampus of alcohol-fed rats. These data suggest that the altered expression of APP and Aß-producing enzymes possibly contributes to the chronic alcohol consumption-mediated pathogenesis of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Etanol/farmacologia , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Cerebelo/enzimologia , Cerebelo/metabolismo , Hipocampo/enzimologia , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA