Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(33): 22345-22358, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37581004

RESUMO

Bismuth ferrite (BFO, BiFeO3), exhibiting both ferromagnetic and ferroelectric properties at room temperature, is one of the most researched multiferroic materials with a growing number of technological applications. In the present study, using a combined theoretical-experimental approach, we have investigated the influence of Ho-doping on the structural, electronic and magnetic properties of BFO. Synthesis and structural XRD characterization of Bi1-xHoxFeO3 (x = 0.02, 0.05, and 0.10) nanopowders have been completed. After structure prediction of Ho-doped BiFeO3 using bond valence calculations (BVC), six most favorable candidates were found: α-, ß-, γ-, R-, T1, and T2. Furthermore, all structure candidates have been examined for different magnetic ordering using DFT calculations. The magnetic behavior of the synthesized materials was investigated using a SQUID magnetometer equipped with an oven. The plethora of magnetic and electronic properties of the Ho-doped BFO that our theoretical research predicted can open up rich possibilities for further investigation and eventual applications.

2.
Inorg Chem ; 56(17): 10644-10654, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28836771

RESUMO

Barium sulfide (BaS) is an important precursor to other barium compounds with applications from ceramics and flame retardants to luminous paints and additives, and recent research shows potential technological applications in electrical and optical devices. Under normal conditions, BaS crystallizes in the NaCl type of structure, and with the increase in pressure BaS undergoes a structural phase transition to a CsCl type modification. This study presents modeling of barium sulfide under pressure with special focus on structural aspects and electronic properties. We predict metastable BaS polymorphs which have not yet been observed in the experiment or in previous calculations, and we investigated their vibrational and thermodynamical properties. Furthermore, we investigate the electronic properties of experimentally known structures as well as novel predicted modifications of BaS on ab initio level using Hartree-Fock, GGA-PBE, and the hybrid B3LYP functional. In this way, we address new possibilities of synthesizing BaS and possible band gap tuning which can have great applications in optoelectrical technologies.

3.
Nanomaterials (Basel) ; 13(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836329

RESUMO

Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.

4.
Chemistry ; 18(35): 10929-36, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22807350

RESUMO

Recently, we have investigated the energy landscape of PbS for many different pressures on the ab initio level by using Hartree-Fock and density functional theory to globally search for possible thermodynamically stable and metastable structures. The perhaps most fascinating observation was that besides the experimentally known modification exhibiting the rock salt structure a second minimum exists close-by on the landscape showing the low-temperature α-GeTe-type structure. In the present study, we investigate the possible reasons for the existence of this metastable modification; in particular we address the question, whether the α-GeTe-type modification might be stabilized (and conversely the rock salt modification destabilized) by steric effects of the non-bonding electron pair.

5.
Nanomaterials (Basel) ; 12(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35564304

RESUMO

We report on a new class of ZnO/ZnS nanomaterials based on the wurtzite/sphalerite architecture with improved electronic properties. Semiconducting properties of pristine ZnO and ZnS compounds and mixed ZnO1-xSx nanomaterials have been investigated using ab initio methods. In particular, we present the results of our theoretical investigation on the electronic structure of the ZnO1-xSx (x = 0.20, 0.25, 0.33, 0.50, 0.60, 0.66, and 0.75) nanocrystalline polytypes (2H, 3C, 4H, 5H, 6H, 8H, 9R, 12R, and 15R) calculated using hybrid PBE0 and HSE06 functionals. The main observations are the possibility of alternative polytypic nanomaterials, the effects of structural features of such polytypic nanostructures on semiconducting properties of ZnO/ZnS nanomaterials, the ability to tune the band gap as a function of sulfur content, as well as the influence of the location of sulfur layers in the structure that can dramatically affect electronic properties. Our study opens new fields of ZnO/ZnS band gap engineering on a multi-scale level with possible applications in photovoltaics, light-emitting diodes, laser diodes, heterojunction solar cells, infrared detectors, thermoelectrics, or/and nanostructured ceramics.

6.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614664

RESUMO

ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles. The ab initio calculations were performed using hybrid PBE0 and HSE06 functionals. The synthesized and characterized ZnO/ZnS core/shell materials show a unique three-phase composition, where the ZnO phase is dominant in the core region and, interestingly, the auxiliary ZnS compound occurs in two phases as wurtzite and sphalerite in the shell region. Moreover, theoretical ab initio calculations show advanced semiconducting properties and possible band-gap tuning in such ZnO/ZnS structures.

7.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947479

RESUMO

Silicon borides represent very appealing industrial materials for research owing to their remarkable features, and, together with other boride and carbide-based materials, have very wide applications. Various Si-B phases have been investigated in the past, however a limited number of studies have been done on the pristine SiB6 compound. Structure prediction using a data mining ab initio approach has been performed in pure silicon hexaboride. Several novel structures, for which there are no previous experimental or theoretical data, have been discovered. Each of the structure candidates were locally optimized on the DFT level, employing the LDA-PZ and the GGA-PBE functional. Mechanical and elastic properties for each of the predicted and experimentally observed modifications have been investigated in great detail. In particular, the ductility/brittleness relationship, the character of the bonding, Young's modulus E, bulk modulus B, and shear modulus K, including anisotropy, have been calculated and analyzed.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25274514

RESUMO

We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible. In the high-pressure regime, we identify a post-perovskite phase in the CaIrO3 type, not previously observed in CaMnO3. Similarly, calculations at effective negative pressure predict a phase transition from the orthorhombic perovskite to an ilmenite-type (FeTiO3) modification of CaMnO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA