Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm ; 74(3): 441-459, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39279523

RESUMO

Lenvatinib is an orally effective tyrosine kinase inhibitor used to treat several types of tumors, including progressive, radioiodine-refractory differentiated thyroid cancer and advanced renal cell carcinoma. Although this drug is increasingly used in therapy, its metabolism and effects on the organism are still not described in detail. Using the rat as an experimental animal model, this study aimed to investigate the metabolism of lenvatinib by rat microsomal enzymes and cytochrome P450 (CYPs) enzymes recombinantly expressed in SupersomesTM in vitro and to assess the effect of lenvatinib on rat CYP expression in vivo. Two metabolites, O-desmethyl lenvatinib, and lenvatinib N-oxide, were produced by rat CYPs in vitro. CYP2A1 and 2C12 were found to be the most effective in forming O-desmethyl lenvatinib, while CYP3A2 was found to primarily form lenvatinib N-oxide. The administration of lenvatinib to rats caused changes in the expression of mRNA and protein, as well as the activity of various CYPs, particularly in an increase in CYP1A1. Thus, the administration of lenvatinib to rats has an impact on the level of CYPs.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Oxirredução , Compostos de Fenilureia , Inibidores de Proteínas Quinases , Quinolinas , Animais , Quinolinas/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Biomed Pharmacother ; 178: 117201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053419

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a significant role in developing several central nervous system (CNS) disorders. Currently, memantine, used for treating Alzheimer's disease, and ketamine, known for its anesthetic and antidepressant properties, are two clinically used NMDAR open-channel blockers. However, despite extensive research into NMDAR modulators, many have shown either harmful side effects or inadequate effectiveness. For instance, dizocilpine (MK-801) is recognized for its powerful psychomimetic effects due to its high-affinity and nearly irreversible inhibition of the GluN1/GluN2 NMDAR subtypes. Unlike ketamine, memantine and MK-801 also act through a unique, low-affinity "membrane-to-channel inhibition" (MCI). We aimed to develop an open-channel blocker based on MK-801 with distinct inhibitory characteristics from memantine and MK-801. Our novel compound, K2060, demonstrated effective voltage-dependent inhibition in the micromolar range at key NMDAR subtypes, GluN1/GluN2A and GluN1/GluN2B, even in the presence of Mg2+. K2060 showed reversible inhibitory dynamics and a partially trapping open-channel blocking mechanism with a significantly stronger MCI than memantine. Using hippocampal slices, 30 µM K2060 inhibited excitatory postsynaptic currents in CA1 hippocampal neurons by ∼51 %, outperforming 30 µM memantine (∼21 % inhibition). K2060 exhibited No Observed Adverse Effect Level (NOAEL) of 15 mg/kg upon intraperitoneal administration in mice. Administering K2060 at a 10 mg/kg dosage resulted in brain concentrations of approximately 2 µM, with peak concentrations (Tmax) achieved within 15 minutes. Finally, applying K2060 with trimedoxime and atropine in mice exposed to tabun improved treatment outcomes. These results underscore K2060's potential as a therapeutic agent for CNS disorders linked to NMDAR dysfunction.


Assuntos
Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Animais , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Masculino , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Memantina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA