Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 38(17): 4243-4258, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626165

RESUMO

Collagen XIII occurs as both a transmembrane-bound and a shed extracellular protein and is able to regulate the formation and function of neuromuscular synapses. Its absence results in myasthenia: presynaptic and postsynaptic defects at the neuromuscular junction (NMJ), leading to destabilization of the motor nerves, muscle regeneration and atrophy. Mutations in COL13A1 have recently been found to cause congenital myasthenic syndrome, characterized by fatigue and chronic muscle weakness, which may be lethal. We show here that muscle defects in collagen XIII-deficient mice stabilize in adulthood, so that the disease is not progressive until very late. Sciatic nerve crush was performed to examine how the lack of collagen XIII or forced expression of its transmembrane form affects the neuromuscular synapse regeneration and functional recovery following injury. We show that collagen XIII-deficient male mice are unable to achieve complete NMJ regeneration and functional recovery. This is mainly attributable to presynaptic defects that already existed in the absence of collagen XIII before injury. Shedding of the ectodomain is not required, as the transmembrane form of collagen XIII alone fully rescues the phenotype. Thus, collagen XIII could serve as a therapeutic agent in cases of injury-induced PNS regeneration and functional recovery. We conclude that intrinsic alterations at the NMJ in Col13a1-/- mice contribute to impaired and incomplete NMJ regeneration and functional recovery after peripheral nerve injury. However, such alterations do not progress once they have stabilized in early adulthood, emphasizing the role of collagen XIII in NMJ maturation.SIGNIFICANCE STATEMENT Collagen XIII is required for gaining and maintaining the normal size, complexity, and functional capacity of neuromuscular synapses. Loss-of-function mutations in COL13A1 cause congenital myasthenic syndrome 19, characterized by postnatally progressive muscle fatigue, which compromises patients' functional capacity. We show here in collagen XIII-deficient mice that the disease stabilizes in adulthood once the NMJs have matured. This study also describes a relevant contribution of the altered NMJ morphology and function to neuromuscular synapses, and PNS regeneration and functional recovery in collagen XIII-deficient mice after peripheral nerve injury. Correlating the animal model data on collagen XIII-associated congenital myasthenic syndrome, it can be speculated that neuromuscular connections in congenital myasthenic syndrome patients are not able to fully regenerate and restore normal functionality if exposed to peripheral nerve injury.


Assuntos
Colágeno Tipo XIII/metabolismo , Regeneração Nervosa , Junção Neuromuscular/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Colágeno Tipo XIII/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Recuperação de Função Fisiológica
2.
Hum Mol Genet ; 26(11): 2076-2090, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369367

RESUMO

Both transmembrane and extracellular cues, one of which is collagen XIII, regulate the formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule, it also undergoes ectodomain shedding to become a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.


Assuntos
Colágeno Tipo XIII/genética , Colágeno Tipo XIII/metabolismo , Sinapses/metabolismo , Acetilcolinesterase/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Colágeno/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica
3.
Eur J Neurosci ; 49(11): 1491-1511, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30667565

RESUMO

Transmembrane collagen XIII has been linked to maturation of the musculoskeletal system. Its absence in mice (Col13a1-/- ) results in impaired neuromuscular junction (NMJ) differentiation and function, while transgenic overexpression (Col13a1oe ) leads to abnormally high bone mass. Similarly, loss-of-function mutations in COL13A1 in humans produce muscle weakness, decreased motor synapse function and mild dysmorphic skeletal features. Here, analysis of the exogenous overexpression of collagen XIII in various muscles revealed highly increased transcript and protein levels, especially in the diaphragm. Unexpectedly, the main location of exogenous collagen XIII in the muscle was extrasynaptic, in fibroblast-like cells, while some motor synapses were devoid of collagen XIII, possibly due to a dominant negative effect. Concomitantly, phenotypical changes in the NMJs of the Col13a1oe mice partly resembled those previously observed in Col13a1-/- mice. Namely, the overall increase in collagen XIII expression in the muscle produced both pre- and postsynaptic abnormalities at the NMJ, especially in the diaphragm. We discovered delayed and compromised acetylcholine receptor (AChR) clustering, axonal neurofilament aggregation, patchy acetylcholine vesicle (AChV) accumulation, disrupted adhesion of the nerve and muscle, Schwann cell invagination and altered evoked synaptic function. Furthermore, the patterns of the nerve trunks and AChR clusters in the diaphragm were broader in the adult muscles, and already prenatally in the Col13a1oe mice, suggesting collagen XIII involvement in the development of the neuromuscular system. Overall, these results confirm the role of collagen XIII at the neuromuscular synapses and highlight the importance of its correct expression and localization for motor synapse formation and function.


Assuntos
Colágeno Tipo XIII/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Axônios/metabolismo , Colágeno Tipo XIII/genética , Diafragma/metabolismo , Camundongos , Camundongos Knockout , Junção Neuromuscular/genética , Receptores Colinérgicos/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
4.
Res Sq ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747797

RESUMO

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like cells is obtained. We monitored transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. Unexpectedly, we find maintenance of undecided Nanog/Oct4-PouV/Klf4-positive pluripotent-like pan-ectodermal stem-cells spanning the entire ectoderm late in the neurulation process with ectodermal patterning completed only at the end of neurulation when pluripotency becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency is found at all axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.

5.
Nat Commun ; 14(1): 5941, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741818

RESUMO

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like derivatives is obtained. Here, we monitor transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. We show maintenance of pluripotency-like signature (Nanog, Oct4/PouV, Klf4-positive) in undecided pan-ectodermal stem-cells spanning the entire ectoderm late during neurulation with ectodermal patterning completed only at the end of neurulation when the pluripotency-like signature becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency-like signature is found at multiple axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.


Assuntos
Ectoderma , Células-Tronco Neurais , Animais , Camundongos , Crista Neural , Camadas Germinativas , Galinhas
6.
Sci Rep ; 12(1): 3344, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228612

RESUMO

Incomplete functional recovery after peripheral nerve injury (PNI) often results in devastating physical disabilities in human patients. Despite improved progress in surgical and non-surgical approaches, achieving complete functional recovery following PNI remains a challenge. This study demonstrates that phentolamine may hold a significant promise in treating nerve injuries and denervation induced muscle atrophy following PNI. In a sciatic nerve crush injury mouse model, we found that phentolamine treatment enhanced motor and functional recovery, protected axon myelination, and attenuated injury-induced muscle atrophy in mice at 14 days post-injury (dpi) compared to saline treatment. In the soleus of phentolamine treated animals, we observed the downregulation of phosphorylated signal transducer and activator of transcription factor 3 (p-STAT3) as well as muscle atrophy-related genes Myogenin, muscle ring finger 1 (MuRF-1), and Forkhead box O proteins (FoxO1, FoxO3). Our results show that both nerve and muscle recovery are integral components of phentolamine treatment-induced global functional recovery in mice at 14 dpi. Moreover, phentolamine treatment improved locomotor functional recovery in the mice after spinal cord crush (SCC) injury. The fact that phentolamine is an FDA approved non-selective alpha-adrenergic blocker, clinically prescribed for oral anesthesia reversal, hypertension, and erectile dysfunction makes this drug a promising candidate for repurposing in restoring behavioral recovery following PNI and SCC injuries, axonal neuropathy, and muscle wasting disorders.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Axônios/metabolismo , Humanos , Masculino , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Regeneração Nervosa , Fentolamina/uso terapêutico , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões
7.
eNeuro ; 1(1)2014.
Artigo em Inglês | MEDLINE | ID: mdl-26464962

RESUMO

This commentary article describes the importance and significance of the article recently published by the Kang and colleagues in The Journal of Neuroscience in 2014. Kang and colleagues provided new features of injury induced synapse remodelling.

8.
EXCLI J ; 10: 69-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-29033703

RESUMO

Tobacco smoking is the common practice in a large percentage of the population worldwide, and the incidence is continuously increasing. Tobacco smoking is the most preventable cause of lung cancer, and it also impairs oral health. People are aware of the carcinogenic effects of tobacco smoking on the lungs and oral cavity, but it is also a risk factor for many other harmful diseases. This review article covers most of the diseases that are associated with tobacco smoking, such as coronary artery disease (CAD), diabetes, chronic obstructive pulmonary disease (COPD), arthritis, impotency, infertility, tuberculosis, and Alzheimer's disease. The association of these diseases with tobacco smoking is discussed in detail in this review, along with their possible pathophysiology. This article focuses on the ongoing research of these diseases, and aims to raise awareness of the hazards of tobacco smoking, and to promote anti-smoking awareness programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA