Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biol Chem ; 404(7): 673-690, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103224

RESUMO

Na+/taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier (SLC) family 10 transporters (gene symbol SLC10A1) and is responsible for the sodium-dependent uptake of bile salts across the basolateral membrane of hepatocytes. In addition to its primary transporter function, NTCP is the high-affinity hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV) viruses and, therefore, is a prerequisite for HBV/HDV virus entry into hepatocytes. The inhibition of HBV/HDV binding to NTCP and internalization of the virus/NTCP receptor complex has become a major concept in the development of new antiviral drugs called HBV/HDV entry inhibitors. Hence, NTCP has emerged as a promising target for therapeutic interventions against HBV/HDV infections in the last decade. In this review, recent findings on protein-protein interactions (PPIs) between NTCP and cofactors relevant for entry of the virus/NTCP receptor complex are summarized. In addition, strategies aiming to block PPIs with NTCP to dampen virus tropism and HBV/HDV infection rates are discussed. Finally, this article suggests novel directions for future investigations evaluating the functional contribution of NTCP-mediated PPIs in the development and progression of HBV/HDV infection and subsequent chronic liver disorders.


Assuntos
Hepatite B , Simportadores , Humanos , Antivirais/farmacologia , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Vírus da Hepatite B , Vírus Delta da Hepatite/metabolismo , Hepatócitos/metabolismo , Peptídeos , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , Ácido Taurocólico/uso terapêutico , Internalização do Vírus
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1816-1827, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501774

RESUMO

OBJECTIVES: Enolase-1-dependent cell surface proteolysis plays an important role in cell invasion. Although enolase-1 (Eno-1), a glycolytic enzyme, has been found on the surface of various cells, the mechanism responsible for its exteriorization remains elusive. Here, we investigated the involvement of post-translational modifications (PTMs) of Eno-1 in its lipopolysaccharide (LPS)-triggered trafficking to the cell surface. RESULTS: We found that stimulation of human lung adenocarcinoma cells with LPS triggered the monomethylation of arginine 50 (R50me) within Eno-1. The Eno-1R50me was confirmed by its interaction with the tudor domain (TD) from TD-containing 3 (TDRD3) protein recognizing methylarginines. Substitution of R50 with lysine (R50K) reduced Eno-1 association with epithelial caveolar domains, thereby diminishing its exteriorization. Similar effects were observed when pharmacological inhibitors of arginine methyltransferases were applied. Protein arginine methyltransferase 5 (PRMT5) was identified to be responsible for Eno-1 methylation. Overexpression of PRMT5 and caveolin-1 enhanced levels of membrane-bound extracellular Eno-1 and, conversely, pharmacological inhibition of PRMT5 attenuated Eno-1 cell-surface localization. Importantly, Eno-1R50me was essential for cancer cell motility since the replacement of Eno-1 R50 by lysine or the suppression of PRMT 5 activity diminished Eno-1-triggered cell invasion. CONCLUSIONS: LPS-triggered Eno-1R50me enhances Eno-1 cell surface levels and thus potentiates the invasive properties of cancer cells. Strategies to target Eno-1R50me may offer novel therapeutic approaches to attenuate tumor metastasis in cancer patients.


Assuntos
Adenocarcinoma/enzimologia , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Biomarcadores Tumorais/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Fosfopiruvato Hidratase/genética , Transporte Proteico/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , Proteínas Supressoras de Tumor/genética
3.
FASEB J ; 31(5): 1916-1928, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28148565

RESUMO

Pirfenidone is an antifibrotic drug, recently approved for the treatment of patients with idiopathic pulmonary fibrosis (IPF). Although pirfenidone exhibits anti-inflammatory, antioxidant, and antifibrotic properties, the molecular mechanism underlying its protective effects remains unknown. Here, we link pirfenidone action with the regulation of the profibrotic hedgehog (Hh) signaling pathway. We demonstrate that pirfenidone selectively destabilizes the glioma-associated oncogene homolog (GLI)2 protein, the primary activator of Hh-mediated gene transcription. Consequently, pirfenidone decreases overall Hh pathway activity in patients with IPF and in patient-derived primary lung fibroblasts and leads to diminished levels of Hh target genes, such as GLI1, Hh receptor Patched-1, α-smooth muscle actin, and fibronectin, and to reduced cell migration and proliferation. Interestingly, Hh-triggered TGF-ß1 expression potentiated Hh responsiveness of primary lung fibroblasts by elevating the available pool of glioma-associated oncogene homolog (GLI)1/GLI2, thus creating a vicious cycle of amplifying fibrotic processes. Because GLI transcription factors are not only crucial for Hh-mediated changes but are also required as mediators of TGF-ß signaling, our findings suggest that pirfenidone exerts its clinically beneficial effects through dual Hh/TGF-ß inhibition by targeting the GLI2 protein.-Didiasova, M., Singh, R., Wilhelm, J., Kwapiszewska, G., Wujak, L., Zakrzewicz, D., Schaefer, L., Markart, P., Seeger, W., Lauth, M., Wygrecka, M. Pirfenidone exerts antifibrotic effects through inhibition of GLI transcription factors.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Piridonas/farmacologia , Adulto , Idoso , Feminino , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Gli2 com Dedos de Zinco
4.
Am J Respir Crit Care Med ; 196(2): 186-199, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005404

RESUMO

RATIONALE: Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. OBJECTIVES: To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. METHODS: The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. CONCLUSIONS: Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.


Assuntos
Proteína Inibidora do Complemento C1/farmacologia , Histonas/metabolismo , Lesão Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar , Proteína Inibidora do Complemento C1/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Mediators Inflamm ; 2017: 1434872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28757683

RESUMO

Chemokines and ATP are among the mediators of inflammatory sites that can enter the circulation via damaged blood vessels. The main function of chemokines is leukocyte mobilization, and ATP typically triggers inflammasome assembly. IL-1ß, a potent inflammasome-dependent cytokine of innate immunity, is essential for pathogen defense. However, excessive IL-1ß may cause life-threatening systemic inflammation. Here, we hypothesize that chemokines control ATP-dependent secretion of monocytic IL-1ß. Lipopolysaccharide-primed human monocytic U937 cells were stimulated with the P2X7 agonist BzATP for 30 min to induce IL-1ß release. CCL3, CCL4, and CCL5 dose dependently inhibited BzATP-stimulated release of IL-1ß, whereas CXCL16 was ineffective. The effect of CCL3 was confirmed for primary mononuclear leukocytes. It was blunted after silencing CCR1 or calcium-independent phospholipase A2 (iPLA2) by siRNA and was sensitive to antagonists of nicotinic acetylcholine receptors containing subunits α7 and α9. U937 cells secreted small factors in response to CCL3 that mediated the inhibition of IL-1ß release. We suggest that CCL chemokines inhibit ATP-induced release of IL-1ß from U937 cells by a triple-membrane-passing mechanism involving CCR, iPLA2, release of small mediators, and nicotinic acetylcholine receptor subunits α7 and α9. We speculate that whenever chemokines and ATP enter the circulation concomitantly, systemic release of IL-1ß is minimized.


Assuntos
Trifosfato de Adenosina/farmacologia , Quimiocina CCL3/farmacologia , Quimiocina CCL4/farmacologia , Quimiocina CCL5/farmacologia , Quimiocinas/farmacologia , Interleucina-1beta/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Células U937
6.
J Biol Chem ; 290(11): 7027-39, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25589788

RESUMO

Hageman factor (FXIIa) initiates the intrinsic coagulation pathway and triggers the kallikrein-kinin and the complement systems. In addition, it functions as a growth factor by expressing promitogenic activities toward several cell types. FXIIa binds to the cell surface via a number of structurally unrelated surface receptors; however, the underlying mechanisms are not yet fully understood. Here, we demonstrate that FXIIa utilizes cell membrane-bound glycosaminoglycans to interact with the cell surface of human lung fibroblasts (HLF). The combination of enzymatic, inhibitory, and overexpression approaches identified a heparan sulfate (HS) component of proteoglycans as an important determinant of the FXIIa binding capacity of HLF. Moreover, cell-free assays and competition experiments revealed preferential binding of FXIIa to HS and heparin over dextran sulfate, dermatan sulfate, and chondroitin sulfate A and C. Finally, we demonstrate that fibroblasts isolated from the lungs of the patients suffering from idiopathic pulmonary fibrosis (IPF) exhibit enhanced FXIIa binding capacity. Increased sulfation of HS resulting from elevated HS 6-O-sulfotransferase-1 expression in IPF HLF accounted, in part, for this phenomenon. Application of RNA interference technology and inhibitors of intracellular sulfation revealed the cooperative action of cell surface-associated HS and urokinase-type plasminogen activator receptor in the accumulation of FXIIa on the cell surface of IPF HLF. Moreover, FXIIa stimulated IPF HLF migration, which was abrogated by pretreatment of cells with heparinase I. Collectively, our study uncovers a novel role of HS-type glycosaminoglycans in a local accumulation of FXIIa on the cell membrane. The enhanced association of FXIIa with IPF HLF suggests its contribution to fibrogenesis.


Assuntos
Fator XIIa/metabolismo , Fibroblastos/patologia , Proteoglicanas de Heparan Sulfato/metabolismo , Pulmão/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Células Cultivadas , Fator XIIa/análise , Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/análise , Humanos , Pulmão/metabolismo , Ligação Proteica
7.
J Biol Chem ; 290(19): 11983-99, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25805497

RESUMO

Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca(2+) chelator BAPTA or an inhibitor of endoplasmic reticulum Ca(2+)-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca(2+) entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca(2+) channel-mediated Ca(2+) influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.


Assuntos
Biomarcadores Tumorais/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Biotinilação , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quelantes/química , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , Exossomos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/química , Inflamação , Células MCF-7 , Invasividade Neoplásica , Metástase Neoplásica , Proteína ORAI1 , Molécula 1 de Interação Estromal , Ácido Tricloroacético/química
8.
Biochim Biophys Acta ; 1852(12): 2678-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391253

RESUMO

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by epithelial cell injury, fibroblast activation and excessive extracellular matrix deposition. Although protein arginine methyltransferase 1 (PRMT1) was found to regulate cell proliferation, differentiation and migration, its role in the development/progression of IPF has not yet been described. RESULTS: Expression of PRMT1 was elevated in lung homogenates from IPF patients. Significant upregulation of PRMT1 expression was also observed in the lungs of bleomycin-treated mice. Immunohistochemical analysis revealed PRMT1-positive staining in fibroblasts/myofibroblasts and alveolar type II cells of IPF lungs and in fibrotic lesions of bleomycin-injured lungs. Fibroblasts isolated from IPF lungs demonstrated increased PRMT1 expression. Interleukin-4 (IL-4), a profibrotic cytokine, enhanced the expression of PRMT1 and the migration of donor and IPF fibroblasts. Interference with the expression or the activity of PRMT1 diminished the migration of the cells in response to IL-4. Strikingly, even though the incubation of donor and IPF fibroblasts with IL-4 did not affect their proliferation, depletion, but not blockage of PRMT1 activity suppressed cell growth. CONCLUSIONS: PRMT1 can contribute to the development of pulmonary fibrosis by regulating fibroblast activities. Thus, interference with its expression and/or activity may provide a novel therapeutic option for patients with IPF.

9.
Biochem J ; 460(2): 295-307, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24628430

RESUMO

Cell-surface-associated proteolysis plays a crucial role in embryonic development, monocyte/macrophage recruitment and tumour cell invasion. The glycolytic enzyme ENO-1 (enolase-1) is translocated from the cytoplasm to the cell surface, where it binds PLG (plasminogen) to enhance pericellular plasmin production and cell motility. In the present study, ENO-1 was found to localize to a specialized subset of lipid rafts called caveolae as demonstrated by fluorescence confocal microscopy and sucrose gradient ultracentrifugation. Co-immunoprecipitation studies revealed that ENO-1 interacts with Cav-1 (caveolin-1), but not with Cav-2, via the CSD (Cav-scaffolding domain). Moreover, an evolutionarily conserved CBM (Cav-binding motif) F296DQDDWGAW304 was identified within ENO-1. The point mutation W301A within the ENO-1 CBM was, however, not sufficient to disrupt ENO-1-Cav-1 interaction, whereas the mutations F296A and W304A markedly affected ENO-1 protein expression. Furthermore, ENO-1 was found associated with Annx2 (annexin 2), representing another caveolar protein, and this interaction was dependent on Cav-1 expression. Knockdown of Cav-1 and Annx2 markedly decreased cell surface expression of ENO-1. ENO-1 overexpression increased cell migration and invasion in a Cav-1-dependent manner. Thus the differential association of ENO-1 with caveolar proteins regulates ENO-1 subcellular localization and, consequently, ENO-1-dependent cell migration and invasion.


Assuntos
Anexina A2/metabolismo , Biomarcadores Tumorais/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Movimento Celular , Células HEK293 , Humanos , Camundongos , Plasminogênio/metabolismo , Transporte Proteico , Células Tumorais Cultivadas
10.
Am J Pathol ; 182(6): 2094-108, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23562441

RESUMO

Mast cell (MC) accumulation has been demonstrated in the lungs of idiopathic pulmonary fibrosis (IPF) patients. Mediators released from MCs may regulate tissue remodeling processes, thereby contributing to IPF pathogenesis. We investigated the role of MC-fibroblast interaction in the progression of lung fibrosis. Increased numbers of activated MCs, in close proximity to fibroblast foci and alveolar type II cells, were observed in IPF lungs. Correspondingly elevated tryptase levels were detected in IPF lung tissue samples. Coculture of human lung MCs with human lung fibroblasts (HLFs) induced MC activation, as evinced by tryptase release, and stimulated HLF proliferation; IPF HLFs exhibited a significantly higher growth rate, compared with control. Tryptase stimulated HLF growth in a PAR-2/PKC-α/Raf-1/p44/42-dependent manner and potentiated extracellular matrix production, but independent of PKC-α, Raf-1, and p44/42 activities. Proproliferative properties of tryptase were attenuated by knockdown or pharmacological inhibition of PAR-2, PKC-α, Raf-1, or p44/42. Expression of transmembrane SCF, but not soluble SCF, was elevated in IPF lung tissue and in fibroblasts isolated from IPF lungs. Coculture of IPF HLFs with MCs enhanced MC survival and proliferation. These effects were cell-contact dependent and could be inhibited by application of anti-SCF antibody or CD117 inhibitor. Thus, fibroblasts and MCs appear to work in concert to perpetuate fibrotic processes and so contribute to lung fibrosis progression.


Assuntos
Fibroblastos/fisiologia , Mastócitos/fisiologia , Fibrose Pulmonar/patologia , Comunicação Celular/fisiologia , Contagem de Células , Degranulação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mastócitos/metabolismo , Proteínas Quinases/fisiologia , Fibrose Pulmonar/metabolismo , Receptor PAR-2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Células-Tronco/fisiologia , Triptases/farmacologia , Triptases/fisiologia
11.
Int J Mol Sci ; 15(11): 21229-52, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25407528

RESUMO

Cell surface-associated proteolysis mediated by plasmin (PLA) is an essential feature of wound healing, angiogenesis and cell invasion, processes that are dysregulated in cancer development, progression and systemic spread. The generation of PLA, initiated by the binding of its precursor plasminogen (PLG) to the cell surface, is regulated by an array of activators, inhibitors and receptors. In this review, we will highlight the importance of the best-characterized components of the PLG/PLA cascade in the pathogenesis of cancer focusing on the role of the cell surface-PLG receptors (PLG-R). PLG-R overexpression has been associated with poor prognosis of cancer patients and resistance to chemotherapy. We will also discuss recent findings on the molecular mechanisms regulating cell surface expression and distribution of PLG-R.


Assuntos
Fibrinolisina/metabolismo , Neoplasias/metabolismo , Plasminogênio/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Anexina A2/genética , Anexina A2/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Queratina-8/genética , Queratina-8/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Nat Commun ; 15(1): 2476, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509088

RESUMO

Cellular entry of the hepatitis B and D viruses (HBV/HDV) requires binding of the viral surface polypeptide preS1 to the hepatobiliary transporter Na+-taurocholate co-transporting polypeptide (NTCP). This interaction can be blocked by bulevirtide (BLV, formerly Myrcludex B), a preS1 derivative and approved drug for treating HDV infection. Here, to elucidate the basis of this inhibitory function, we determined a cryo-EM structure of BLV-bound human NTCP. BLV forms two domains, a plug lodged in the bile salt transport tunnel of NTCP and a string that covers the receptor's extracellular surface. The N-terminally attached myristoyl group of BLV interacts with the lipid-exposed surface of NTCP. Our structure reveals how BLV inhibits bile salt transport, rationalizes NTCP mutations that decrease the risk of HBV/HDV infection, and provides a basis for understanding the host specificity of HBV/HDV. Our results provide opportunities for structure-guided development of inhibitors that target HBV/HDV docking to NTCP.


Assuntos
Hepatite B , Lipopeptídeos , Simportadores , Humanos , Vírus da Hepatite B/fisiologia , Antivirais/uso terapêutico , Receptores Virais/metabolismo , Ácidos e Sais Biliares/metabolismo , Vírus Delta da Hepatite/fisiologia , Simportadores/metabolismo , Internalização do Vírus , Hepatócitos/metabolismo
13.
Am J Respir Cell Mol Biol ; 47(5): 614-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22771387

RESUMO

The disturbance of hemostatic balance, associated with increased tissue factor (TF) expression and activity, occurs in the lungs of patients with idiopathic pulmonary fibrosis (IPF). However, the molecular mechanisms responsible for the regulation of TF expression under profibrotic conditions have not been assessed. We found that transforming growth factor-ß1 (TGF-ß1) markedly enhanced TF expression in primary human lung fibroblasts (HLFs), whereas platelet-derived growth factor (PDGF)-BB and IGF (insulin-like growth factor)-1 showed only a moderate effect, and PDGB-CC exerted no effect. TGF-ß1-induced TF expression correlated with its elevated cell-surface activity, it required de novo gene transcription and protein synthesis, and it was dependent on JNK and Akt activity, because pharmacological inhibition or the knockdown of the previously mentioned kinases prevented TF synthesis. Exposure of HLFs to TGF-ß1 activated JNK in a PI3K-dependent manner and induced Akt phosphorylation at threonine 308 and serine 473, but did not change the phosphorylation status of threonine 450. Akt phosphorylation at serine 473 correlated with JNK activity, and co-immunoprecipitation studies revealed a direct interaction between JNK and Akt. Furthermore, TGF-ß1-induced TF expression required the recruitment of c-Fos and JunD into a heterodimeric activator protein (AP)-1 complex. Moreover, strong immunoreactivity for phosphorylated Akt and JNK as well as c-Fos and JunD was observed in fibroblasts and myofibroblasts in IPF lungs. In conclusion, PI3K/JNK/Akt and AP-1 synergize to induce TF expression in HLFs after TGF-ß1 challenge. Our findings provide new insights into the molecular mechanisms responsible for the regulation of TF expression, and open new perspectives on the treatment of pulmonary fibrosis and other diseases characterized by the inappropriate expression of this cell-surface receptor.


Assuntos
Fibroblastos/metabolismo , Pulmão/patologia , Transdução de Sinais , Tromboplastina/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Meia-Vida , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estabilidade de RNA , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Tromboplastina/genética , Transcrição Gênica
14.
Am J Respir Crit Care Med ; 183(12): 1703-14, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21471103

RESUMO

RATIONALE: Activation of the coagulation cascade has been demonstrated in pulmonary fibrosis. In addition to its procoagulant function, various coagulation proteases exhibit cellular effects that may also contribute to fibrotic processes in the lung. OBJECTIVE: To investigate the importance of protease-activated receptor (PAR)-2 and its activators, coagulation factor VIIa (FVIIa)/tissue factor (TF), in the development of idiopathic pulmonary fibrosis (IPF). METHODS: Expression and localization of PAR-2 and its activators were examined in IPF lung tissue. The ability of PAR-2 to mediate various cellular processes was studied in vitro. MEASUREMENTS AND MAIN RESULTS: Expression of PAR-2 was strongly elevated in IPF lungs and was attributable to alveolar type II cells and fibroblasts/myofibroblasts. Transforming growth factor-ß(1), a key profibrotic cytokine, considerably enhanced PAR-2 expression in human lung fibroblasts. FVIIa stimulated proliferation of human lung fibroblasts and extracellular matrix production in a PAR-2-dependent manner, but did not initiate differentiation of fibroblasts into myofibroblasts. PAR-2/FVIIa-driven mitogenic activities were mediated via the p44/42 mitogen-activated protein kinase pathway and were independent of factor Xa and thrombin production. Proproliferative properties of FVIIa were markedly potentiated in the presence of TF and abrogated by TF antisense oligonucleotides. Hyperplastic alveolar type II cells overlying fibroblastic foci were found to be the source of FVII in IPF lungs. Moreover, TF colocalized with PAR-2 on fibroblasts/myofibroblasts in IPF lungs. CONCLUSIONS: The PAR-2/TF/FVIIa axis may contribute to the development of pulmonary fibrosis; thus, interference with this pathway confers novel therapeutic potential for the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática/etiologia , Receptor PAR-2/fisiologia , Diferenciação Celular/fisiologia , Fator VIIa/fisiologia , Fator Xa/fisiologia , Feminino , Fibroblastos/patologia , Fibronectinas/biossíntese , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Técnicas In Vitro , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Mitose , Miofibroblastos/patologia , Osteopontina/biossíntese , Alvéolos Pulmonares/patologia , Receptor PAR-2/análise , Trombina/biossíntese , Tromboplastina/fisiologia , Fator de Crescimento Transformador beta/farmacologia
15.
Am J Respir Crit Care Med ; 184(4): 438-48, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21471105

RESUMO

RATIONALE: Low-density lipoprotein receptor­related protein-1 (LRP-1) mediates the endocytic clearance of various proteinases, including matrix metalloproteinases (MMPs). The ectodomain of LRP-1 can be shed from the cell surface, releasing a soluble form of this receptor (sLRP-1), which antagonizes ligand endocytosis by cellular LRP-1. OBJECTIVES: To assess if increased LRP-1 shedding occurs in the lungs of patients with acute respiratory distress syndrome (ARDS) and may lead to the accumulation of MMPs and subsequent tissue injury. METHODS: We determined sLRP-1 levels in bronchoalveolar lavage fluids (BALF) from 46 patients with ARDS and their correlation with MMP concentration and disease severity. In complementary in vitro studies, we investigated the mechanisms underlying the LRP-1 release from the cell surface and its impact on MMP cellular uptake. MEASUREMENTS AND MAIN RESULTS: sLRP-1 levels were significantly elevated in BALF but not in plasma from patients with ARDS compared with control subjects and further increased in the later course of the disease. Baseline BALF sLRP-1 concentration was positively correlated with disease severity and significantly higher in nonsurvivors compared with survivors. The presence of ARDS BALF enhanced LRP-1 shedding from cultured lung fibroblasts but not from alveolar type II cells or macrophages. This process was blocked when ARDS BALF was supplemented with metalloproteinase inhibitor resulting in enhanced cellular uptake and degradation of MMP-2 and -9. Accordingly, sLRP-1 BALF concentration in patients with ARDS was positively correlated with MMP levels and laminin, a marker of basement membrane disruption. CONCLUSIONS: Increased LRP-1 shedding prevents the cellular clearance of MMPs and might thereby contribute to tissue destruction in ARDS lungs.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/metabolismo , Metaloproteinases da Matriz/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Adulto , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Laminina/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Concentração Osmolar , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/fisiopatologia , Índice de Gravidade de Doença , Sobreviventes , Adulto Jovem
16.
Int J Mol Sci ; 13(10): 12383-400, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23202904

RESUMO

Protein arginine methylation is a novel posttranslational modification that plays a pivotal role in a variety of intracellular events, such as signal transduction, protein-protein interaction and transcriptional regulation, either by the direct regulation of protein function or by metabolic products originating from protein arginine methylation that influence nitric oxide (NO)-dependent processes. A growing body of evidence suggests that both mechanisms are implicated in cardiovascular and pulmonary diseases. This review will present and discuss recent research on PRMTs and the methylation of non-histone proteins and its consequences for the pathogenesis of various lung disorders, including lung cancer, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease and asthma. This article will also highlight novel directions for possible future investigations to evaluate the functional contribution of arginine methylation in lung homeostasis and disease.


Assuntos
Pneumopatias/enzimologia , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Asma/enzimologia , Asma/patologia , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/patologia , Pneumopatias/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/patologia
17.
Biomedicines ; 10(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052874

RESUMO

Hepatitis B virus (HBV) infections are among the major public health concerns worldwide with more than 250 million of chronically ill individuals. Many of them are additionally infected with the Hepatitis D virus, a satellite virus to HBV. Chronic infection frequently leads to serious liver diseases including cirrhosis and hepatocellular carcinoma, the most common type of liver cancer. Although current antiviral therapies can control HBV replication and slow down disease progress, there is an unmet medical need to identify therapies to cure this chronic infectious disease. Lately, a noteworthy progress in fighting against HBV has been made by identification of the high-affinity hepatic host receptor for HBV and HDV, namely Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1). Next to its primary function as hepatic uptake transporter for bile acids, NTCP is essential for the cellular entry of HBV and HDV into hepatocytes. Due to this high-ranking discovery, NTCP has become a valuable target for drug development strategies for HBV/HDV-infected patients. In this review, we will focus on a newly predicted three-dimensional NTCP model that was generated using computational approaches and discuss its value in understanding the NTCP's membrane topology, substrate and virus binding taking place in plasma membranes. We will review existing data on structural, functional, and biological consequences of amino acid residue changes and mutations that lead to loss of NTCP's transport and virus receptor functions. Finally, we will discuss new directions for future investigations aiming at development of new NTCP-based HBV entry blockers that inhibit HBV tropism in human hepatocytes.

18.
Viruses ; 14(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746730

RESUMO

Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1) is a hepatic bile acid uptake carrier participating in the enterohepatic circulation of bile acids. Apart from its transporter function, NTCP acts as the high-affinity liver-specific receptor for the hepatitis B virus (HBV), which attaches via its preS1-peptide domain of the large surface protein to NTCP, subsequently leading to endocytosis of the virus/NTCP-receptor complex. Although the process of NTCP-dependent HBV infection of hepatocytes has received much attention over the last decade, the precise molecular sites of the virus/NTCP interaction have not been fully identified. Inspection of the primary protein sequence of human NTCP revealed 139YIYSRGIY146 as a highly conserved tyrosine-rich motif. To study the role of Y139, Y141 and Y146 amino acids in NTCP biology, the aforementioned residues were substituted with alanine, phenylalanine or glutamate (mimicking phosphorylation) using site-directed mutagenesis. Similar to wt NTCP, the Y139A, Y141A, Y146A, Y141F, Y146F, and Y146E mutants were expressed at the plasma membrane of HEK293 cells and exhibited intact bile acid transport function. Y146A, Y146E, and Y146F demonstrated transport kinetics comparable to wild-type NTCP with Km values of 57.3-112.4 µM and Vmax values of 6683-7579 pmol/mg protein/min. Only Y141E was transport deficient, most likely due to an intracellular accumulation of the mutant protein. Most importantly, Y146A and Y146E mutation completely abrogated binding of the viral preS1-peptide to NTCP, while the Y146F mutant of NTCP showed some residual binding competence for preS1. Consequently, the NTCP mutants Y146A and Y146E, when expressed in HepG2 hepatoma cells, showed complete loss of susceptibility for in vitro HBV infection. In conclusion, tyrosine 146, and to some extent tyrosine 141, both belonging to the tyrosine-rich motif 139YIYSRGIY146 of human NTCP, are newly identified amino acid residues that play an essential role in the interaction of HBV with its receptor NTCP and, thus, in the process of virus entry into hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Ácidos e Sais Biliares/metabolismo , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos , Humanos , Receptores Virais/metabolismo , Ácido Taurocólico , Tirosina/metabolismo , Internalização do Vírus
19.
J Biol Chem ; 285(15): 11638-51, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20142324

RESUMO

Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.


Assuntos
Fator XII/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Pulmão/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Humanos , Camundongos , Células NIH 3T3 , Oligonucleotídeos Antissenso/química , Regiões Promotoras Genéticas , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais
20.
Nephrol Dial Transplant ; 26(1): 124-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20647192

RESUMO

BACKGROUND: Dimethylarginines are inhibitors of NO synthesis and are involved in the pathogenesis of vascular diseases. In this study, we ask the question if asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels change during fatal and reversible acute rejection, and contribute to the pathogenesis of chronic vasculopathy. METHODS: The Dark Agouti to Lewis rat strain combination was used to investigate fatal acute rejection. Fischer 344 kidneys were transplanted to Lewis rats to study reversible acute rejection episode and the process of chronic rejection. Isograft recipients and untreated Lewis rats were used as controls. l-arginine derivatives were determined by HPLC, and ADMA-metabolizing enzymes were studied by quantitative RT-PCR and western blotting. RESULTS: Renal transplantation transiently increased dimethylarginine levels independent of acute rejection. ADMA plasma levels did not importantly differ between recipients undergoing fatal or reversible acute rejection, whereas SDMA was even lower in recipients of Fisher 344 grafts. In comparison to isograft recipients, ADMA and SDMA levels were slightly elevated during reversible, but not during the process of chronic rejection. Increased dimethylarginine levels, however, did not block NO synthesis. Interestingly, protein methylation, but not ADMA degradation, was increased in allografts. CONCLUSIONS: Our data do not support the concept that renal allografts are protected from fatal rejection by dimethylarginines. Dimethylarginines may play a role in triggering chronic rejection, but a contribution to vascular remodelling itself is improbable. In contrast, differential arginine methylation of yet unknown proteins by PRMT1 may be involved in the pathogenesis of acute and chronic rejection.


Assuntos
Arginina/análogos & derivados , Rejeição de Enxerto , Nefropatias/metabolismo , Nefropatias/terapia , Transplante de Rim , Transplante Homólogo , Doença Aguda , Animais , Arginina/metabolismo , Western Blotting , Doença Crônica , Técnicas Imunoenzimáticas , Nefropatias/patologia , Masculino , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA